Publications by authors named "Schiller H"

Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium.

View Article and Find Full Text PDF

Targeted (nano-)drug delivery is essential for treating respiratory diseases, which are often confined to distinct lung regions. However, spatio-temporal profiling of drugs or nanoparticles (NPs) and their interactions with lung macrophages remains unresolved. Here, we present LungVis 1.

View Article and Find Full Text PDF
Article Synopsis
  • Long-term factor Xa (FXa) inhibition shows promise in reducing inflammation and improving outcomes after heart attacks and strokes by impacting platelet function.
  • In experiments with mice, chronic FXa inhibition led to smaller brain and heart injury sizes and better cardiac function compared to acute inhibition.
  • Analysis of patients revealed that those receiving FXa inhibitors had reduced infarct sizes and showed changes in platelet proteins that suggest decreased release of substances that promote inflammation and clotting.
View Article and Find Full Text PDF

In allergen-specific immunotherapy, adjuvants are explored for modulating allergen-specific Th2 immune responses to re-establish clinical tolerance. One promising class of adjuvants are β-glucans, which are naturally derived sugar structures and components of dietary fibers that activate C-type lectin (CLR)-, "Toll"-like receptors (TLRs), and complement receptors (CRs). We characterized the immune-modulating properties of six commercially available β-glucans, using immunological (receptor activation, cytokine secretion, and T cell modulating potential) as well as metabolic parameters (metabolic state) in mouse bone marrow-derived myeloid dendritic cells (mDCs).

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the introduction of "ehrapy," an open-source Python framework designed for comprehensive analysis of electronic health records (EHRs) and epidemiology data, addressing the lack of tools for heterogeneous data exploration.
  • ehrapy streamlines various analytical processes including data extraction, quality control, and statistical analysis, allowing researchers to explore patient-disease associations, compare patient groups, and analyze treatment impacts, among other features.
  • The framework is exemplified through six case studies, showcasing its application in patient stratification for pneumonia, survival analysis, cardiovascular risk evaluation, and bias detection in EHRs, with the goal of standardizing analysis pipelines in biomedical research.
View Article and Find Full Text PDF

Introduction: Reduction en masse is a rare diagnosis in which an inguinal hernia is reduced; however, the bowel remains entrapped inside the hernia sac within the preperitoneal space. Although this occurs infrequently, missed diagnosis can significantly affect patient outcomes.

Presentation Of Case: A 73-year-old male presented with obstructive symptoms in the setting of no prior abdominal operations and recently self-reduced inguinal hernia.

View Article and Find Full Text PDF

Emphysema, the progressive destruction of gas exchange surfaces in the lungs, is a hallmark of COPD that is presently incurable. This therapeutic gap is largely due to a poor understanding of potential drivers of impaired tissue regeneration, such as abnormal lung epithelial progenitor cells, including alveolar type II (ATII) and airway club cells. We discovered an emphysema-specific subpopulation of ATII cells located in enlarged distal alveolar sacs, termed asATII cells.

View Article and Find Full Text PDF

Single-cell multiplexing techniques (cell hashing and genetic multiplexing) combine multiple samples, optimizing sample processing and reducing costs. Cell hashing conjugates antibody-tags or chemical-oligonucleotides to cell membranes, while genetic multiplexing allows to mix genetically diverse samples and relies on aggregation of RNA reads at known genomic coordinates. We develop hadge (hashing deconvolution combined with genotype information), a Nextflow pipeline that combines 12 methods to perform both hashing- and genotype-based deconvolution.

View Article and Find Full Text PDF

Background: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown.

Methods: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events.

Results: Endothelial ablation of leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation.

View Article and Find Full Text PDF

Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks.

View Article and Find Full Text PDF

Introduction: Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised.

Methods: We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4).

View Article and Find Full Text PDF

Ribociclib is an orally bioavailable, selective cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor. CDK4/6 inhibition by ribociclib leads to retinoblastoma tumor suppressor protein (Rb) reactivation, thereby restoring Rb-mediated cell cycle arrest. Ribociclib is approved for the treatment of patients with hormone receptor-positive/human epidermal growth factor receptor-2-negative (HR+/HER2-) advanced breast cancer (ABC), at the dose of 600 mg once daily (QD) during cycles of 21 days on/7 days off, with optional dose reduction to 400 mg and 200 mg.

View Article and Find Full Text PDF

Background: Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear.

Methods: We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration.

View Article and Find Full Text PDF

Pulmonary fibrosis develops as a consequence of failed regeneration after injury. Analyzing mechanisms of regeneration and fibrogenesis directly in human tissue has been hampered by the lack of organotypic models and analytical techniques. In this work, we coupled ex vivo cytokine and drug perturbations of human precision-cut lung slices (hPCLS) with single-cell RNA sequencing and induced a multilineage circuit of fibrogenic cell states in hPCLS.

View Article and Find Full Text PDF

Autoimmunity plays a role in certain types of lung fibrosis, notably connective tissue disease-associated interstitial lung disease (CTD-ILD). In idiopathic pulmonary fibrosis (IPF), an incurable and fatal lung disease, diagnosis typically requires clinical exclusion of autoimmunity. However, autoantibodies of unknown significance have been detected in IPF patients.

View Article and Find Full Text PDF
Article Synopsis
  • - This study explores how lung progenitor cells develop from human pluripotent stem cells using advanced techniques like single-cell RNA-sequencing and a refined differentiation protocol.
  • - Key findings reveal that specific signaling pathways (Sonic hedgehog, TGF-β, and Notch) are crucial for lung progenitor emergence during the early stages of development, while HHEX influences a separate trajectory that leads to liver cell formation.
  • - The research enhances our understanding of how the lungs form and serves as a basis for future research in early human lung development and related modeling using hPSCs.
View Article and Find Full Text PDF

Optimal tissue recovery and organismal survival are achieved by spatiotemporal tuning of tissue inflammation, contraction and scar formation. Here we identify a multipotent fibroblast progenitor marked by CD201 expression in the fascia, the deepest connective tissue layer of the skin. Using skin injury models in mice, single-cell transcriptomics and genetic lineage tracing, ablation and gene deletion models, we demonstrate that CD201 progenitors control the pace of wound healing by generating multiple specialized cell types, from proinflammatory fibroblasts to myofibroblasts, in a spatiotemporally tuned sequence.

View Article and Find Full Text PDF

Regenerating the lungs' architecture after injury requires rebuilding its fibroelastic extracellular matrix scaffold. Konkimalla et al. establish that regenerative cell states (RCSs) of both epithelial and mesenchymal origin are functionally linked and indispensable for this process.

View Article and Find Full Text PDF

Single-cell proteomics by mass spectrometry is emerging as a powerful and unbiased method for the characterization of biological heterogeneity. So far, it has been limited to cultured cells, whereas an expansion of the method to complex tissues would greatly enhance biological insights. Here we describe single-cell Deep Visual Proteomics (scDVP), a technology that integrates high-content imaging, laser microdissection and multiplexed mass spectrometry.

View Article and Find Full Text PDF

Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population.

View Article and Find Full Text PDF

Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline.

View Article and Find Full Text PDF

The origins of wound myofibroblasts and scar tissue remains unclear, but it is assumed to involve conversion of adipocytes into myofibroblasts. Here, we directly explore the potential plasticity of adipocytes and fibroblasts after skin injury. Using genetic lineage tracing and live imaging in explants and in wounded animals, we observe that injury induces a transient migratory state in adipocytes with vastly distinct cell migration patterns and behaviours from fibroblasts.

View Article and Find Full Text PDF

Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights.

View Article and Find Full Text PDF