Publications by authors named "Schilcher K"

Lipoproteins of the opportunistic pathogen Staphylococcus aureus play a crucial role in various cellular processes and host interactions. Consisting of a protein and a lipid moiety, they support nutrient acquisition and anchor the protein to the bacterial membrane. Recently, we identified several processed and secreted small linear peptides that derive from the secretion signal sequence of S.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of fibrosis-driving factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expression in MASLD and hepatoma cells.

View Article and Find Full Text PDF

Pseudomonas aeruginosa and Staphylococcus aureus are among the most frequently isolated bacterial species from polymicrobial infections of patients with cystic fibrosis and chronic wounds. We apply mass spectrometry guided interaction studies to determine how chemical interaction shapes the fitness and community structure during co-infection of these two pathogens. We demonstrate that S.

View Article and Find Full Text PDF

In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. and , the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies.

View Article and Find Full Text PDF

can colonize the human host and cause a variety of superficial and invasive infections. The success of as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal.

View Article and Find Full Text PDF

is an important pathogen responsible for nosocomial and community-acquired infections in humans, and methicillin-resistant (MRSA) infections have continued to increase despite widespread preventative measures. can colonize the female vaginal tract, and reports have suggested an increase in MRSA infections in pregnant and postpartum women as well as outbreaks in newborn nurseries. Currently, little is known about specific factors that promote MRSA vaginal colonization and subsequent infection.

View Article and Find Full Text PDF

In vivo bioluminescence imaging has been used to monitor Staphylococcus aureus infections in preclinical models by employing bacterial reporter strains possessing a modified lux operon from Photorhabdus luminescens. However, the relatively short emission wavelength of lux (peak 490 nm) has limited tissue penetration. To overcome this limitation, the gene for the click beetle (Pyrophorus plagiophtalamus) red luciferase (luc) (with a longer >600 emission wavelength), was introduced singly and in combination with the lux operon into a methicillin-resistant S.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (MTB) is notorious for persisting within host macrophages. Efflux pumps decrease intracellular drug levels, thus fostering persistence of MTB during therapy. Isoniazid (INH) and pyrazinamide (PZA) are substrates of the efflux pump breast cancer resistance protein-1 (BCRP-1), which is inhibited by chloroquine (CQ).

View Article and Find Full Text PDF

Staphylococcus aureus biofilms are extremely difficult to treat. They provide a protected niche for the bacteria, rendering them highly recalcitrant toward host defenses as well as antibiotic treatment. Bacteria within a biofilm are shielded from the immune system by the formation of an extracellular polymeric matrix, composed of polysaccharides, extracellular DNA (eDNA), and proteins.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) has acquired an arsenal of virulence factors, promoting life-threatening invasive infections such as necrotizing fasciitis. Current therapeutic regimens for necrotizing fasciitis include surgical debridement and treatment with cell wall-active antibiotics. Addition of clindamycin (CLI) is recommended, although clinical evidence is lacking.

View Article and Find Full Text PDF

Neutrophil extracellular trap (NET) formation is described as a tool of the innate host defence to fight against invading pathogens. Fibre-like DNA structures associated with proteins such as histones, cell-specific enzymes and antimicrobial peptides are released, thereby entrapping invading pathogens. It has been reported that several bacteria are able to degrade NETs by nucleases and thus evade the NET-mediated entrapment.

View Article and Find Full Text PDF

Unlabelled: Biomaterials upon implantation are immediately covered by blood proteins which direct the subsequent blood activation. These early events determine the following cascade of biological reactions and consequently the long-term success of implants. The ability to modulate surface properties of biomaterials is therefore of considerable clinical significance.

View Article and Find Full Text PDF

Background: A multitude of different imaging systems are already available to image genetically altered RNA species; however, only a few of these techniques are actually suitable to visualize endogenous RNA. One possibility is to use fluorescently-labelled and hybridization-sensitive probes. In order to yield more information about the exact localization and movement of a single RNA molecule, it is necessary to image such probes with highly sensitive microscope setups.

View Article and Find Full Text PDF

The Gram-positive human pathogen Staphylococcus aureus causes a variety of human diseases such as skin infections, pneumonia, and endocarditis. The micrococcal nuclease Nuc1 is one of the major S. aureus virulence factors and allows the bacterium to avoid neutrophil extracellular trap (NET)-mediated killing.

View Article and Find Full Text PDF

We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories.

View Article and Find Full Text PDF

Acrylate nanoanchors of subdiffraction-limited diameter are written with optical stimulated emission depletion (STED) lithography. After incubation, 98% of all nanoanchors are loaded quickly with fluorescently labeled antibodies. Controlling the size of the nanoanchors allows for limiting the number of the antibodies.

View Article and Find Full Text PDF

Although classification of astrocytic tumors is standardized by the WHO grading system, which is mainly based on microscopy-derived, histomorphological features, there is great interobserver variability. The main causes are thought to be the complexity of morphological details varying from tumor to tumor and from patient to patient, variations in the technical histopathological procedures like staining protocols, and finally the individual experience of the diagnosing pathologist. Thus, to raise astrocytoma grading to a more objective standard, this paper proposes a methodology based on atomic force microscopy (AFM) derived images made from histopathological samples in combination with data mining techniques.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) is a human pathogen causing a wide range of mild to severe and life-threatening diseases. The GAS M1 protein is a major virulence factor promoting GAS invasiveness and resistance to host innate immune clearance. M1 displays an irregular coiled-coil structure, including the B-repeats that bind fibrinogen.

View Article and Find Full Text PDF

Purpose: To analyze the changes in optic surface roughness before and after injection of various intraocular lens (IOL) models using atomic force microscopy (AFM).

Settings: Departments of Ophthalmology, Medical University of Graz, General Hospital Linz and University Hospital Basel; Upper Austria University, School of Applied Health and Social Sciences, Linz, Austria.

Design: Experimental study.

View Article and Find Full Text PDF

Background: Cystic fibrosis (CF) lung disease is characterized by perpetuated neutrophilic inflammation with progressive tissue destruction. Neutrophils represent the major cellular fraction in CF airway fluids and are known to form neutrophil extracellular traps (NETs) upon stimulation. Large amounts of extracellular DNA-NETs are present in CF airway fluids.

View Article and Find Full Text PDF

The intergenic region linking conjugative transfer and replication copy control modules of IncF plasmids shows conservation of gene homology and organization. Genes distal to finO are coordinately expressed with the upstream transfer operon encoding the majority of conjugation genes in related plasmids. Here we investigate potential functions for these genes in copy number control and in processes related to conjugation: gene transfer, pilus specific phage infection and plasmid-promoted biofilm formation by an Escherichia coli host.

View Article and Find Full Text PDF

A scanning microwave microscope (SMM) for spatially resolved capacitance measurements in the attofarad-to-femtofarad regime is presented. The system is based on the combination of an atomic force microscope (AFM) and a performance network analyzer (PNA). For the determination of absolute capacitance values from PNA reflection amplitudes, a calibration sample of conductive gold pads of various sizes on a SiO(2) staircase structure was used.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) was used to study the effects of bleaching on the morphology of the enamel surface with nanoscale resolution. Samples of human tooth enamel with native (pumiced) or fine-polished surfaces were examined before and after bleaching with 30% carbamide peroxide. The obtained profilometric AFM data revealed significant morphological surface alterations.

View Article and Find Full Text PDF