Publications by authors named "Schikora H"

Recently, we introduced the liquid application method for time-resolved analyses (LAMA). The time-consuming cleaning cycles required for the substrate solution exchange and storage of the sensitive droplet-dispenser nozzles present practical challenges. In this work, a dispenser cleaning system for the semi-automated cleaning of the piezo-actuator-driven picolitre-droplet dispensers required for LAMA is introduced to streamline typical workflows.

View Article and Find Full Text PDF

We introduce the spitrobot, a protein crystal plunger, enabling reaction quenching via cryo-trapping with a time-resolution in the millisecond range. Protein crystals are mounted on canonical micromeshes on an electropneumatic piston, where the crystals are kept in a humidity and temperature-controlled environment, then reactions are initiated via the liquid application method (LAMA) and plunging into liquid nitrogen is initiated after an electronically set delay time to cryo-trap intermediate states. High-magnification images are automatically recorded before and after droplet deposition, prior to plunging.

View Article and Find Full Text PDF

We present a cryogenic mass spectrometry protocol with the capability to detect peptides in the attomole dilution range from ice films. Our approach employs femtosecond laser pulses and implements neither substrate modification nor proton donor agents in the aqueous solution, known to facilitate analyte detection in mass spectrometry. In a systematic study, we investigated the impact of temperature, substrate composition, and irradiation wavelength (513 and 1026 nm) on the bradykinin signal onset.

View Article and Find Full Text PDF

Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization.

View Article and Find Full Text PDF

For the two proteins myoglobin and fluoroacetate dehalogenase, we present a systematic comparison of crystallographic diffraction data collected by serial femtosecond (SFX) and serial synchrotron crystallography (SSX). To maximize comparability, we used the same batch of micron-sized crystals, the same sample delivery device, and the same data analysis software. Overall figures of merit indicate that the data of both radiation sources are of equivalent quality.

View Article and Find Full Text PDF

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points.

View Article and Find Full Text PDF

We introduce a liquid application method for time-resolved analyses (LAMA), an in situ mixing approach for serial crystallography. Picoliter-sized droplets are shot onto chip-mounted protein crystals, achieving near-full ligand occupancy within theoretical diffusion times. We demonstrate proof-of-principle binding of GlcNac to lysozyme, and resolve glucose binding and subsequent ring opening in a time-resolved study of xylose isomerase.

View Article and Find Full Text PDF

Two different nonthermal plasma reactors at atmospheric pressure were assessed for the removal of organic micropollutants (atrazine, chlorfenvinfos, 2,4-dibromophenol, and lindane) from aqueous solutions (1-5 mg L(-1)) at laboratory scale. Both devices were dielectric barrier discharge (DBD) reactors; one was a conventional batch reactor (R1) and the other a coaxial thin-falling-water-film reactor (R2). A first-order degradation kinetics was proposed for both experiments.

View Article and Find Full Text PDF

Two different nonthermal plasma reactors at atmospheric pressure were assessed for the first time for cyanide removal (1 mg L(-1)) from aqueous solutions (0.025 M NaHCO(3)/NaOH buffer, pH 11) at laboratory scale. Both devices were dielectric barrier discharge (DBD) reactors; one of them was a conventional batch reactor (R1) and the other one was a coaxial thin falling water film reactor (R2).

View Article and Find Full Text PDF