Publications by authors named "Schiene K"

The aim of this study was to investigate the efficacy of cebranopadol in two rodent models of visceral pain. Cebranopadol is a first-in-class analgesic with agonist activity at the nociceptin/orphanin FQ opioid peptide receptor and classical µ-, δ- and κ-opioid peptide receptors. Colitis was induced in Naval Medical Research Institute mice by intra-rectal infusion of mustard oil.

View Article and Find Full Text PDF

Cebranopadol is a novel, first-in-class analgesic with agonist activity at the nociceptin/orphanin FQ opioid peptide (NOP) receptor as well as the classical opioid peptide receptors. This study investigated the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Selective antagonists were used to probe the involvement of the NOP receptor and the µ-opioid peptide (MOP) receptors.

View Article and Find Full Text PDF

N-ethyl-N-nitrosourea (ENU) random mutagenesis was used to generate a mouse model for the analysis of the transient receptor potential vanilloid 1 (TRPV1) cation channel. A transversion from T→A in exon 4 led to a Leu206Stop mutation generating a loss-of-function mutant. The TRPV1 agonist capsaicin was used to analyze functional and nociceptive parameters in vitro and in vivo in TRPV1 Leu206Stop mice and congenic C3HeB/FeJ controls.

View Article and Find Full Text PDF

Prialt, a synthetic version of Ca(v)2.2 antagonist ω-conotoxin MVIIA derived from Conus magus, is the first clinically approved voltage-gated calcium channel blocker for refractory chronic pain. However, due to the narrow therapeutic window and considerable side effects associated with systemic dosing, Prialt is only administered intrathecally.

View Article and Find Full Text PDF

Peripheral receptors may contribute to the effects of systemically administered centrally available analgesics. In the present study, we analysed the effect of local peripheral injection of the nociceptin/orphanin FQ peptide (NOP) receptor agonist Ro65-6570 and compared it to the µ-opioid peptide (MOP) receptor agonist morphine in streptozotocin-induced diabetic polyneuropathy in rats. Ro65-6570 and morphine were injected intraplantarly into the hind paw of diabetic rats, and mechanical withdrawal thresholds were determined in both paws (ipsi- and contralateral to the injection site).

View Article and Find Full Text PDF

A series of pyridine derivatives in the C-region of N-((6-trifluoromethyl-pyridin-3-yl)methyl) 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. The SAR analysis indicated that 6-difluorochloromethyl pyridine derivatives were the best surrogates of the C-region for previous leads. Among them, compound 31 showed excellent antagonism to capsaicin as well as to multiple hTRPV1 activators.

View Article and Find Full Text PDF

A series of N-[{2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)-pyridin-3-yl}methyl] N'-(6,6-fused heterocyclic) ureas have been investigated as hTRPV1 antagonists. Among them, compound 15 showed highly potent TRPV1 antagonism to capsaicin, with Ki(ant)=0.2nM, as well as antagonism to other activators, and it was efficacious in a pain model.

View Article and Find Full Text PDF

Targeting functionally independent receptors may provide synergistic analgesic effects in neuropathic pain. To examine the interdependency between different opioid receptors (µ-opioid peptide [MOP], δ-opioid peptide [DOP] and κ-opioid peptide [KOP]) and the nociceptin/orphanin FQ peptide (NOP) receptor in streptozotocin (STZ)-induced diabetic polyneuropathy, nocifensive activity was measured using a hot plate test in wild-type and NOP, MOP, DOP and KOP receptor knockout mice in response to the selective receptor agonists Ro65-6570, morphine, SNC-80 and U50488H, or vehicle. Nocifensive activity was similar in non-diabetic wild-type and knockout mice at baseline, before agonist or vehicle administration.

View Article and Find Full Text PDF

A series of 2-alkyl/alkenyl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed excellent and stereospecific TRPV1 antagonism with better potency than previous lead 2. Among them, compound 15f demonstrated a strong analgesic profile in a rat neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner.

View Article and Find Full Text PDF

Cebranopadol (trans-6'-fluoro-4',9'-dihydro-N,N-dimethyl-4-phenyl-spiro[cyclohexane-1,1'(3'H)-pyrano[3,4-b]indol]-4-amine) is a novel analgesic nociceptin/orphanin FQ peptide (NOP) and opioid receptor agonist [Ki (nM)/EC50 (nM)/relative efficacy (%): human NOP receptor 0.9/13.0/89; human mu-opioid peptide (MOP) receptor 0.

View Article and Find Full Text PDF

A series of 2-thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Among them, compound 24S showed stereospecific and excellent TRPV1 antagonism of capsaicin-induced activation. Further, it demonstrated strong anti-allodynic in a rat neuropathic pain model.

View Article and Find Full Text PDF

Background: Innate responses against spontaneous pain are proposed to improve the predictive validity of preclinical analgesia models. Therefore, development and validation of novel readouts is necessary. To investigate whether innate rodent burrowing is a useful alternative behavioural readout for assessment of analgesic efficacy, a complete Freund's adjuvant (CFA)-induced model of sub-chronic inflammation was used to compare the effects of naproxen, ibuprofen and pregabalin in weight-bearing (WB), open-field (OF) and burrowing assays.

View Article and Find Full Text PDF

The structure activity relationships of 2-oxy pyridine derivatives in the C-region of N-(6-trifluoromethyl-pyridin-3-ylmethyl) 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as hTRPV1 antagonists were investigated. The analysis indicated that the lipophilicity of the 2-oxy substituents was critical for potent antagonism and 4 or 5 carbons appeared to be optimal for activity. Multiple compounds proved to have comparable activity to 1, which had been reported as the most potent antagonist for capsaicin activity among the previous series of compounds.

View Article and Find Full Text PDF

A series of N-(2-amino-6-trifluoromethylpyridin-3-ylmethyl)-2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were designed combining previously identified pharmacophoric elements and evaluated as hTRPV1 antagonists. The SAR analysis indicated that specific hydrophobic interactions of the 2-amino substituents in the C-region of the ligand were critical for high hTRPV1 binding potency. In particular, compound 49S was an excellent TRPV1 antagonist (K(i(CAP)) = 0.

View Article and Find Full Text PDF

Introduction: Many opioid analgesics share common structural elements; however, minor differences in structure can result in major differences in pharmacological activity, pharmacokinetic profile, and clinical efficacy and tolerability.

Areas Covered: This review compares and contrasts the chemistry, pharmacodynamics, pharmacokinetics, and CNS 'functional activity' of tapentadol and tramadol, responsible for their individual clinical utilities.

Expert Opinion: The distinct properties of tapentadol and tramadol generate different CNS functional activities, making each drug the prototype of different classes of opioid/nonopioid analgesics.

View Article and Find Full Text PDF

The novel analgesic tapentadol HCl [(-)-(1R,2R)-3-(3-dimethylamino)-1-ethyl-2-methyl-propyl)-phenol hydrochloride] combines μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition (NRI) in a single molecule and shows a broad efficacy profile in various preclinical pain models. This study analyzed the analgesic activity of tapentadol in experimental inflammatory pain. Analgesia was evaluated in the formalin test (pain behavior, rat and mouse), carrageenan-induced mechanical hyperalgesia (paw-pressure test, rat), complete Freund's adjuvant (CFA)-induced paw inflammation (tactile hyperalgesia, rat), and CFA knee-joint arthritis (weight bearing, rat).

View Article and Find Full Text PDF

Neuropathic pain is a clinical condition which remains poorly treated and combinations of pregabalin, an antagonist of the α2δ-subunit of Ca(2+) channels, with tapentadol, a μ-opioid receptor agonist/noradrenaline reuptake inhibitor, or with classical opioids such as oxycodone and morphine might offer increased therapeutic potential. In the rat spinal nerve ligation model, a dose dependent increase in ipsilateral paw withdrawal thresholds was obtained using an electronic von Frey filament after IV administration of pregabalin (1-10mg/kg), tapentadol (0.316-10mg/kg), morphine (1-4.

View Article and Find Full Text PDF

Tapentadol exerts its analgesic effects through micro opioid receptor agonism and noradrenaline reuptake inhibition in the central nervous system. Preclinical studies demonstrated that tapentadol is effective in a broad range of pain models, including nociceptive, inflammatory, visceral, mono- and polyneuropathic models. Moreover, clinical studies showed that tapentadol effectively relieves moderate to severe pain in various pain care settings.

View Article and Find Full Text PDF

The function of the transient receptor potential vanilloid 1 (TRPV1) cation channel was analyzed with RNA interference technologies and compared to TRPV1 knockout mice. Expression of shRNAs targeting TRPV1 in transgenic (tg) mice was proven by RNase protection assays, and TRPV1 downregulation was confirmed by reduced expression of TRPV1 mRNA and lack of receptor agonist binding in spinal cord membranes. Unexpectedly, TRPV3 mRNA expression was upregulated in shRNAtg but downregulated in knockout mice.

View Article and Find Full Text PDF

Pain is generally considered to have a sensory and an affective component. Clinical research has suggested that morphine more potently attenuates the affective component as compared to the sensory component. Because preclinical nociception models typically focus on the sensory component of nociception, and do not assess the affective component, it is unclear whether this potency difference of morphine can also be found in preclinical models.

View Article and Find Full Text PDF

(-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl) is a novel micro-opioid receptor (MOR) agonist (Ki = 0.1 microM; relative efficacy compared with morphine 88% in a [35S]guanosine 5'-3-O-(thio)triphosphate binding assay) and NE reuptake inhibitor (Ki = 0.5 microM for synaptosomal reuptake inhibition).

View Article and Find Full Text PDF

To examine the role of the vanilloid receptor TRPV1 in neuropathic pain, we assessed the effects of the receptor antagonist thioxo-BCTC and antisense oligonucleotides against the TRPV1 mRNA in a rat model of spinal nerve ligation. In order to identify accessible sites on the mRNA of TRPV1, the RNase H assay was used, leading to the successful identification of binding sites for antisense oligonucleotides. Cotransfection studies using Cos-7 cells were employed to identify the most effective antisense oligonucleotide efficiently inhibiting the expression of a fusion protein consisting of TRPV1 and the green fluorescent protein in a specific and concentration-dependent manner.

View Article and Find Full Text PDF

Clinical reports have described a long-lasting relief in neuropathic pain patients treated with NMDA receptor antagonists; it is unclear, however, what mediates this effect. In this work, we have used two NMDA antagonists of different class to investigate if the antiallodynic effects in a rat neuropathy model can outlast their in vivo NMDA antagonism. Both the uncompetitive NMDA antagonist ketamine and the glycine(B) antagonist MRZ 2/576 inhibited neuronal responses to iontophoretic NMDA in anaesthetised rats with the time course consistent with their known pharmacokinetics (t(1/2) approximately 10-12min, similar in control and nerve-injured rats).

View Article and Find Full Text PDF

NMDA receptors are implicated in central sensitisation underlying chronic pain, and NMDA antagonists have a potential for the treatment of neuropathic pain. Functional NMDA receptors are also present on primary afferents, where they may play a role in pro-nociceptive plasticity. The importance of this mechanism in neuropathic pain remains unclear.

View Article and Find Full Text PDF

Buprenorphine is a potent opioid analgesic clinically used to treat moderate to severe pain. The present study assessed its analgesic efficacy in a broad range of rodent models of acute and chronic pain. In the phenylquinone writhing, hot plate, and tail flick mouse models of acute pain, full analgesic efficacy was obtained (ED50 values: 0.

View Article and Find Full Text PDF