Publications by authors named "Scheps K"

Congenital hypothyroidism (CH) due to thyroglobulin (TG) variants causes very low serum TG levels with normal or enlarged thyroid glands, depending on the severity of the defect, and with autosomal recessive inheritance. The purpose of this study was to functionally characterize p.Cys1281Tyr variant in the TG gene in order to increase our knowledge of the molecular mechanisms associated with CH.

View Article and Find Full Text PDF

Thyroid peroxidase (TPO) is a membrane-bound glycoprotein located at the apical side of the thyroid follicular cells that catalyzes both iodination and coupling of iodotyrosine residues within the thyroglobulin molecule, leading to the synthesis of thyroid hormone. Variants in TPO cause congenital hypothyroidism (CH) by iodide organification defect and are commonly inherited in an autosomal recessive fashion. In the present work, we report a detailed population analysis and bioinformatic prediction of the TPO variants indexed in the Genome Aggregation Database (gnomAD) v2.

View Article and Find Full Text PDF

Thyroglobulin (TG) is a large glycosylated protein of 2767 amino acids, secreted by the thyrocytes into the follicular lumen. It plays an essential role in the process of thyroid hormone synthesis. TG gene variants lead to permanent congenital hypothyroidism.

View Article and Find Full Text PDF

Thyroglobulin (TG), a large glycosylated protein secreted by thyrocytes into the thyroid follicular lumen, plays an essential role in thyroid hormone biosynthesis. Rattus norvegicus TG (rTG) is encoded by a large single copy gene, 186-kb long, located on chromosome 7 composed of 48 exons encoding a 8461-kb mRNA. Although the TG gene displays sequence variability, many missense mutations do not impose any adverse effect on the TG protein, whereas other nucleotide substitutions may affect its TG stability and/or TG intracellular trafficking.

View Article and Find Full Text PDF

Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the most common preventable causes of both cognitive and motor deficits. CH is a heterogeneous group of thyroid disorders in which inadequate production of thyroid hormone occurs due to defects in proteins involved in the gland organogenesis (dysembryogenesis) or in multiple steps of thyroid hormone biosynthesis (dyshormonogenesis). Dysembryogenesis is associated with genes responsible for the development or growth of thyroid cells: such as NKX2-1, FOXE1, PAX8, NKX2-5, TSHR, TBX1, CDCA8, HOXD3 and HOXB3 resulting in agenesis, hypoplasia or ectopia of thyroid gland.

View Article and Find Full Text PDF

Massive parallel sequencing technologies are facilitating the faster identification of sequence variants with the consequent capability of untangling the molecular bases of many human genetic syndromes. However, it is not always easy to understand the impact of novel variants, especially for missense changes, which can lead to a spectrum of phenotypes. This study presents a custom-designed multistep methodology to evaluate the impact of novel variants aggregated in the genome aggregation database for the HBB, HBA2, and HBA1 genes, by testing and improving its performance with a dataset of previously described alterations affecting those same genes.

View Article and Find Full Text PDF

Hemoglobin (Hb) synthesis is a complex, well-coordinated process that requires molecular chaperones. These intervene in different steps: regulating epigenetic mechanisms necessary for the adequate expression of the α- and β-globin clusters, binding the nascent peptides and helping them acquire their native structure, preventing oxidative damage by free globin chains and preventing the cleavage of essential erythroid transcription factors. This study analyzed the distribution of the single nucleotide polymorphism (SNP) rs4296276 in intron 1 of the α-globin chaperone α Hb-stabilizing protein (AHSP) in the Argentinean population.

View Article and Find Full Text PDF

Hemoglobinopathies are the most common autosomal recessive disorders and are mostly inherited in a recessive manner. However, certain mutations can affect the globin chain stability, leading to dominant forms of thalassemia. The aim of this work was the molecular and structural characterization of two heterozygous in-frame deletions, leading to β-globin variants in pediatric patients in Argentina.

View Article and Find Full Text PDF

Different hemoglobin isoforms are expressed during the embryonic, fetal and postnatal stages. They are formed by combination of polypeptide chains synthesized from the α- and β-globin gene clusters. Based on the fact that the presence of high hemoglobin F levels is beneficial in both sickle cell disease and severe thalassemic syndromes, a revision of the regulation of the β-globin cluster expression is proposed, especially regarding the genes encoding the y-globin chains (HBG1 and HBG2).

View Article and Find Full Text PDF

Two distinct syndromes that link α-thalassemia and intellectual disability (ID) have been described: ATR-X, due to mutations in the ATRX gene, and ATR-16, a contiguous gene deletion syndrome in the telomeric region of the short arm of chromosome 16. A critical region where the candidate genes for the ID map has been established. In a pediatric patient with Hemoglobin H disease, dysmorphic features and ID, 4 novel and clinically relevant Copy Number Variants were identified.

View Article and Find Full Text PDF

The α-thalassemia is one of the most common hereditary disorders worldwide. Currently, molecular diagnostics is the only available tool to achieve an accurate diagnosis. The purpose of this study was to characterize the molecular bases of these syndromes in our environment and to establish genotype-phenotype associations.

View Article and Find Full Text PDF

We describe here the molecular and hematological characteristics of novel frameshift mutations in exon 2 of the HBB gene (in heterozygous state) found in two Argentinean pediatric patients with dominant β-thalassemia-like features. In Hb Wilde, HBB:c.270_273delTGAG(p.

View Article and Find Full Text PDF

We describe a novel frameshift mutation on the HBA1 gene (c.187delG), causative of α-thalassemia (α-thal) in a Black Cuban family with multiple sequence variants in the HBA genes and the Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T] mutation.

View Article and Find Full Text PDF

We report two point mutations found in a heterozygous state on the HBA1 gene of an 88-year-old Argentinean patient with an α(+)-thalassemia (α(+)-thal) phenotype: Hb Riccarton HBA1:c.154G>A) [α51(CE9)Gly→Ser] and a novel mutation, HBA1:c.301-2A>T that affects the splicing acceptor site of the second intron and leads to a non functional α-globin chain.

View Article and Find Full Text PDF