Dysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which was resistant to atropine and prazosin.
View Article and Find Full Text PDFOver the last two decades, awareness of the negative repercussions of flaws in the planning, conduct and reporting of preclinical research involving experimental animals has been growing. Several initiatives have set out to increase transparency and internal validity of preclinical studies, mostly publishing expert consensus and experience. While many of the points raised in these various guidelines are identical or similar, they differ in detail and rigour.
View Article and Find Full Text PDFGenetic microdeletion at the 22q11 locus is associated with very high risk for schizophrenia. The 22q11.2 microdeletion (Df(h22q11)/+) mouse model shows cognitive deficits observed in this disorder, some of which can be linked to dysfunction of the prefrontal cortex (PFC).
View Article and Find Full Text PDFWe conducted a clinical trial to assess the safety and putative efficacy of an additional human rabies immune globulin (HRIG; KEDRAB) versus an older product (Comparator, HyperRAB S/D® [Grifols]) and determine whether HRIG interferes with development of endogenous antibodies versus Comparator, when each is given with an active rabies vaccine. This was a prospective, double-blind, single-period, non-inferiority study in which subjects were randomized (1:1) to a single dose (20 IU/kg) of HRIG or Comparator on day 0 and rabies vaccine (RabAvert® [GlaxoSmithKline]; 1 mL of ≥2.5 IU/mL) on days 0, 3, 7, 14, and 28.
View Article and Find Full Text PDFInconsistent findings between laboratories are hampering scientific progress and are of increasing public concern. Differences in laboratory environment is a known factor contributing to poor reproducibility of findings between research sites, and well-controlled multisite efforts are an important next step to identify the relevant factors needed to reduce variation in study outcome between laboratories. Through harmonization of apparatus, test protocol, and aligned and non-aligned environmental variables, the present study shows that behavioral pharmacological responses in Shank2 knockout (KO) rats, a model of synaptic dysfunction relevant to autism spectrum disorders, were highly replicable across three research centers.
View Article and Find Full Text PDFThe discovery of novel drugs for neurodegenerative diseases has been a real challenge over the last decades. The development of patient- and/or disease-specific models represents a powerful strategy for the development and validation of lead candidates in preclinical settings. The implementation of a reliable platform modeling dopaminergic neurons will be an asset in the study of dopamine-associated pathologies such as Parkinson's disease.
View Article and Find Full Text PDFObjective: Within the last years, there has been growing awareness of the negative repercussions of unstandardized planning, conduct and reporting of preclinical and biomedical research. Several initiatives have set the aim of increasing validity and reliability in reporting of studies and publications, and publishers have formed similar groups. Additionally, several groups of experts across the biomedical spectrum have published experience and opinion-based guidelines and guidance on potential standardized reporting.
View Article and Find Full Text PDFAnxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC) independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP) and anxiolytics (diazepam, DZP) on extracellular field potentials (EFP) in the PFC, parietal cortex and hippocampus (dorsal and ventral parts) of adult (8 months) and aged (18 months) Wistar rats.
View Article and Find Full Text PDFThe development of novel therapeutics to prevent cognitive decline of Alzheimer's disease (AD) is facing paramount difficulties since the translational efficacy of rodent models did not resulted in better clinical results. Currently approved treatments, including the acetylcholinesterase inhibitor donepezil (DON) and the N-methyl-D-aspartate antagonist memantine (MEM) provide marginal therapeutic benefits to AD patients. There is an urgent need to develop a predictive animal model that is phylogenetically proximal to humans to achieve better translation.
View Article and Find Full Text PDFSingle sub-anesthetic doses of ketamine can exacerbate the symptoms of patients diagnosed with schizophrenia, yet similar ketamine treatments rapidly reduce depressive symptoms in major depression. Acute doses of the atypical antipsychotic drug clozapine have also been shown to counteract ketamine-induced psychotic effects. In the interest of understanding whether these drug effects could be modeled with alterations in neuroplasticity, we examined the impact of acutely-administered ketamine and clozapine on in vivo long-term potentiation (LTP) in the rat's hippocampus-to-prefrontal cortex (H-PFC) pathway.
View Article and Find Full Text PDFAge-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy.
View Article and Find Full Text PDFLife-long weekly infusions of human α1-antitrypsin (hAAT) are currently administered as augmentation therapy for patients with genetic AAT deficiency (AATD). Several recent clinical trials attempt to extend hAAT therapy to conditions outside AATD, including type 1 diabetes. Since the endpoint for AATD is primarily the reduction of risk for pulmonary emphysema, the present study explores hAAT dose protocols and routes of administration in attempt to optimize hAAT therapy for islet-related injury.
View Article and Find Full Text PDFDespite the vast amount of research on schizophrenia and depression in the past two decades, there have been few innovative drugs to treat these disorders. Precompetitive research collaborations between companies and academic groups can help tackle this innovation deficit, as illustrated by the achievements of the IMI-NEWMEDS consortium.
View Article and Find Full Text PDFTransl Psychiatry
April 2016
Species-conserved (intermediate) phenotypes that can be quantified and compared across species offer important advantages for translational research and drug discovery. Here, we investigate the utility of network science methods to assess the pharmacological alterations of the large-scale architecture of brain networks in rats and humans. In a double-blind, placebo-controlled, cross-over study in humans and a placebo-controlled two-group study in rats, we demonstrate that the application of ketamine leads to a topological reconfiguration of large-scale brain networks towards less-integrated and more-segregated information processing in both the species.
View Article and Find Full Text PDFRationale: Aberrant prefrontal-hippocampal (PFC-HC) connectivity is disrupted in several psychiatric and at-risk conditions. Advances in rodent functional imaging have opened the possibility that this phenotype could serve as a translational imaging marker for psychiatric research. Recent evidence from functional magnetic resonance imaging (fMRI) studies has indicated an increase in PFC-HC coupling during working-memory tasks in both schizophrenic patients and at-risk populations, in contrast to a decrease in resting-state PFC-HC connectivity.
View Article and Find Full Text PDFInteraction between the hippocampus and the medial prefrontal cortex (mPFC) has been identified as a key target in several neuropsychiatric disorders. However, the hippocampus-mPFC (H-PFC) pathway has not been outlined in mice, which are increasingly the leading choice for new animal models for neurological disorders. Our results, establish the existence of a topographical, monosynaptic pathway originating exclusively from the ventral CA1 and subiculum to the mPFC.
View Article and Find Full Text PDFOwing to a similar cerebral neuro-anatomy, non-human primates are viewed as the most valid models for understanding cognitive deficits. This study evaluated psychomotor and mnesic functions of 41 young to old mouse lemurs (Microcebus murinus). Psychomotor capacities and anxiety-related behaviors decreased abruptly from middle to late adulthood.
View Article and Find Full Text PDFDrug Discov Today Technol
September 2013
In chronic diseases such as Alzheimer's disease (AD), the arsenal of biomarkers available to determine the effectiveness of symptomatic treatment is very limited. Interpretation of the results provided in literature is cumbersome and it becomes difficult to predict their standardization to a larger patient population. Indeed, cognitive assessment alone does not appear to have sufficient predictive value of drug efficacy in early clinical development of AD treatment.
View Article and Find Full Text PDFIn humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain.
View Article and Find Full Text PDFA bulk of studies in rodents and humans suggest that sleep facilitates different phases of learning and memory process, while sleep deprivation (SD) impairs these processes. Here we tested the hypothesis that SD could alter spatial learning and memory processing in a non-human primate, the grey mouse lemur (Microcebus murinus), which is an interesting model of aging and Alzheimer's disease (AD). Two sets of experiments were performed.
View Article and Find Full Text PDFOctodon degus (O. degus) is a diurnal rodent that spontaneously develops several physiopathological conditions, analogous in many cases to those experienced by humans. In light of this, O.
View Article and Find Full Text PDFBody function rhythmicity has a key function for the regulation of internal timing and adaptation to the environment. A wealth of recent data has implicated endogenous biological rhythm generation and regulation in susceptibility to disease, longevity, cognitive performance. Concerning brain diseases, it has been established that many molecular pathways implicated in neurodegeneration are under circadian regulation.
View Article and Find Full Text PDF