Publications by authors named "Schenberg A"

In Santa Quitéria City, part of the population uses surface water for potation. These waters do not undergo any treatment before consumption. As the region has a deposit of uranium, assessing water quality becomes important.

View Article and Find Full Text PDF

Proteorhodopsin (PR) is a light harvesting protein widely distributed among bacterioplankton that plays an integral energetic role in a new pathway of marine light capture. The conversion of light into chemical energy in non-chlorophyll-based bacterial systems could contribute to overcoming thermodynamic and metabolic constraints in biofuels production. In an attempt to improve biohydrogen production yields, H2 evolution catalyzed by endogenous hydrogenases, Hyd-3 and/or Hyd-4, was measured when recombinant proteorhodopsin (PR) was concomitantly expressed in Escherichia coli cells.

View Article and Find Full Text PDF

Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation.

View Article and Find Full Text PDF

This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter β-domain of the Neisseria gonorrhoeae IgA protease precursor (IgAβ), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane.

View Article and Find Full Text PDF

The conversion of biomass into ethanol using fast, cheap, and efficient methodologies to disintegrate and hydrolyse the lignocellulosic biomass is the major challenge of the production of the second-generation ethanol. This revision describes the most relevant advances on the conversion process of lignocellulose materials into ethanol, development of new xylose-fermenting strains of Saccharomyces cerevisiae using classical and modern genetic tools and strategies, elucidation of the expression of some complex industrial phenotypes, tolerance mechanisms of S. cerevisiae to lignocellulosic inhibitors, monitoring and strategies to improve fermentation processes.

View Article and Find Full Text PDF

A synthetic version of the metal-regulated gene A (mrgA) promoter from Bacillus subtilis, which in this Gram-positive bacterium is negatively regulated by manganese, iron, cobalt, or copper turned out to promote high level of basal gene expression that is further enhanced by Co(II), Cd(II), Mn(II), Zn(II), Cu(II), or Ni(II), when cloned in the Gram-negative bacterium Cupriavidus metallidurans. Promoter activity was monitored by expression of the reporter gene coding for the enhanced green fluorescent protein (EGFP), and cellular intensity fluorescence was quantified by flow cytometry. Expression levels in C.

View Article and Find Full Text PDF

Comments are made and new insights are provided on the key role played by endogenous and exogenous electric fields, where the former starts and conducts the repairing chain, while the latter is able to scramble the completion of the repair process and, as a consequence, may have important potential as a radiation sensitizer for clinical application.

View Article and Find Full Text PDF

Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells.

View Article and Find Full Text PDF

The effects of gamma radiation from (60)Co and (137)Cs on DNA in aqueous solution are studied experimentally. Using an improved plasmid purification protocol and improved electrophoretic gel analysis techniques provided results with relatively small uncertainties. The results are compared with both theoretical and experimental results.

View Article and Find Full Text PDF

Genome polymorphism in the yeast Saccharomyces cerevisiae is frequently the result of transposition and recombination events involving Ty elements. The activity of these retrotransposons is closely integrated with the life cycle of the host. Ty transcription is repressed in diploid, but not haploid, cells and is induced by certain stress conditions.

View Article and Find Full Text PDF

The pso4-1 mutant was characterized as deficient in some types of recombination, including gene conversion, crossing over, and intrachromosomal recombination. The mode of interaction between pso4-1 and rad51 and between pso4-1 and rad52 mutants indicated that the PSO4 gene belongs to the RAD52 epistasis group for strand-break repair. Moreover, the presence of the pso4-1 mutation decreased 8-MOP-photoinduced mutagenesis of the rad51 and rad52 mutants.

View Article and Find Full Text PDF

In this paper we report the purification and study of the immunogenic properties of the Mycobacterium leprae 18-kDa protein antigen produced and secreted by the yeast Saccharomyces cerevisiae, using an expression system we recently described [Biotech. Lett. 16 (1994) 1241-1246].

View Article and Find Full Text PDF

A system is described for the selection of DNA sequences showing promoter activity in the yeast Saccharomyces cerevisiae using a heterologous reporter enzyme which is efficiently secreted by the yeast host. A multicopy shuttle plasmid of the YEp-type was constructed so as to carry multiple unique cloning sites at the 5' end of the Aspergillus awamori glucoamylase cDNA. Glucoamylase can only be expressed upon insertion at one of these unique cloning sites of a DNA fragment from any source, provided it is endowed with promoter function in S.

View Article and Find Full Text PDF

Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant.

View Article and Find Full Text PDF

We report the construction and use of a new system for the direct screening of recombinant clones after transformation. The system uses a Bacillus subtilis-Escherichia coli shuttle vector that carries the B. subtilis structural gene for alpha-amylase.

View Article and Find Full Text PDF

The haploid xs9 mutant, originally selected for on the basis of a slight sensitivity to the lethal effect of X-rays, was found to be extremely sensitive to inactivation by 8-methoxypsoralen (8MOP) photoaddition, especially when cells are treated in the G2 phase of the cell cycle. As the xs9 mutation showed no allelism with any of the 3 known pso mutations, it was now given the name of pso4-1. Regarding inactivation, the pso4-1 mutant is also sensitive to mono- (HN1) or bi-functional (HN2) nitrogen mustards, it is slightly sensitive to 254 nm UV radiation (UV), and shows nearly normal sensitivity to 3-carbethoxypsoralen (3-CPs) photoaddition or methyl methanesulfonate (MMS).

View Article and Find Full Text PDF

The induction of mitotic gene conversion and crossing-over in Saccharomyces cerevisiae diploid cells homozygous for the pso4-1 mutation was examined in comparison to the corresponding wild-type strain. The pso4-1 mutant strain was found to be completely blocked in mitotic recombination induced by photoaddition of mono- and bifunctional psoralen derivatives as well as by mono- (HN1) and bifunctional (HN2) nitrogen mustards or 254 nm UV radiation in both stationary and exponential phases of growth. Concerning the lethal effect, diploids homozygous for the pso4-1 mutation are more sensitive to all agents tested in any growth phase.

View Article and Find Full Text PDF