The author looks back on his development in microbiology and yeast research, and on the establishment in Delft of the FEMS Central Office, FEMS Publications Office and the birth of FEMS Yeast Research.
View Article and Find Full Text PDFFuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S.
View Article and Find Full Text PDFInt J Syst Bacteriol
April 1997
Pulsed-field gel electrophoresis (PFGE), randomly amplified polymorphic DNA (RAPD) analysis, serotype, and killer toxin sensitivity patterns of a wide range of saprobic, clinical, and veterinary isolates of both varieties of Cryptococcus neoformans were examined. C. neoformans var.
View Article and Find Full Text PDFThe possible physiological role of mitochondria in anaerobically grown Saccharomyces cerevisiae was investigated via enzyme localization and inhibitor studies. Almost all of the activity of citrate synthase (EC 4.1.
View Article and Find Full Text PDFCandida utilis CBS 621 exhibits the Kluyver effect for maltose, i.e. this yeast can respire maltose and is able to ferment glucose, but is unable to ferment maltose.
View Article and Find Full Text PDFGrowth and metabolite formation were studied in oxygen-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 growing on glucose or maltose at a dilution rate of 0.1 h-1. With either glucose or maltose S.
View Article and Find Full Text PDFAerobic, glucose-limited chemostat of Saccharomyces cerevisiae CBS 8066 co-metabolized propionate when this compound was added to the reservoir medium. Co-metabolism of propionate led to an increase of the biomass and protein yields. Attempts to grow S.
View Article and Find Full Text PDFSaccharomyces cerevisiae T23C (pda1::Tn5ble) is an isogenic gene replacement mutant of the wild-type strain S. cerevisiae T23D. The mutation causes a complete loss of pyruvate dehydrogenase activity.
View Article and Find Full Text PDFAppl Environ Microbiol
September 1993
In Saccharomyces cerevisiae, maltose is transported by a proton symport mechanism, whereas glucose transport occurs via facilitated diffusion. The energy requirement for maltose transport was evaluated with a metabolic model based on an experimental value of YATP for growth on glucose and an ATP requirement for maltose transport of 1 mol.mol-1.
View Article and Find Full Text PDFThe use of electrophoretic karyotyping in systematics of yeasts is discussed. New data are provided on the karyotypes of the medically important fungi Hortaea werneckii, Filobasidiella (= Cryptococcus) neoformans, and Malassezia species. Hortaea werneckii has twelve to eighteen bands of chromosomal DNA, ranging in size between 500 and 2300 kb.
View Article and Find Full Text PDFAddition of benzoate to the medium reservoir of glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 growing at a dilution rate (D) of 0.10 h-1 resulted in a decrease in the biomass yield, and an increase in the specific oxygen uptake rate (qO2) from 2.5 to as high as 19.
View Article and Find Full Text PDFJ Biochem Biophys Methods
August 1991
Determination of the carbon concentration in protein solutions by total organic carbon analysis was found to be a sensitive and reliable method for the estimation of protein concentrations. Using a carbon content of 0.53 g/g in protein and of 0.
View Article and Find Full Text PDFIn synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.
View Article and Find Full Text PDFChemostat cultures of a catalase-negative mutant of Hansenula polymorpha CBS 4732 were able to decompose hydrogen peroxide at a high rate. This was apparent from experiments in which the yeast was grown under carbon limitation in chemostat culture on mixtures of glucose and H2O2. The enzyme responsible for H2O2 degradation is probably the mitochondrial enzyme cytochrome c peroxidase (CCP), which was present at very high activities.
View Article and Find Full Text PDFGrowth yields of Saccharomyces cerevisiae and Candida utilis in carbon-limited chemostat cultures were evaluated. The yields on ethanol and acetate were much lower in S. cerevisiae, in line with earlier reports that site I phosphorylation is absent in this yeast.
View Article and Find Full Text PDFType species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative.
View Article and Find Full Text PDFAppl Environ Microbiol
November 1990
In vivo hydrolysis of inulin and sucrose was examined in selected yeasts of the genus Kluyveromyces. Cells, grown in sucrose-limited chemostat cultures, were subjected to treatments for the removal of inulinase, the enzyme responsible for the hydrolysis of both inulin and sucrose. The effects of these treatments were studied by measurement of inulin-dependent and sucrose-dependent oxygen consumption by cell suspensions.
View Article and Find Full Text PDFAppl Environ Microbiol
November 1990
In the yeast Kluyveromyces marxianus two forms of inulinase were present, namely, an inulinase secreted into the culture fluid and an inulinase retained in the cell wall. Both forms were purified and analyzed by denaturing and nondenaturing polyacrylamide gel electrophoresis. With the use of endo-beta-N-acetyl-glucosaminidase H, it was established that the enzyme retained in the cell wall and the enzyme secreted into the culture fluid have similar subunits consisting of a 64-kDa polypeptide with varying amounts of carbohydrate (26 to 37% of the molecular mass).
View Article and Find Full Text PDFThe energetics of Saccharomyces cerevisiae were studied in anaerobic glucose-limited chemostat cultures via an analysis of biomass and metabolite production. The observed YATP was dependent on the composition of the biomass, the production of acetate, the extracellular pH, and the provision of an adequate amount of fatty acid in the medium. Under optimal growth conditions, the YATP was approximately 16 g biomass (mol ATP formed)-1.
View Article and Find Full Text PDFWhen Saccharomyces cerevisiae CBS 8066 was grown under maltose limitation, two enzymes specific for maltose utilization were present: a maltose carrier, and the maltose-hydrolysing alpha-glucosidase. The role of these two enzymes in the physiology of S. cerevisiae was investigated in a comparative study in which Candida utilis CBS 621 was used as a reference organism.
View Article and Find Full Text PDFThe physiology of Saccharomyces cerevisiae CBS 8066 was studied in anaerobic glucose-limited chemostat cultures in a mineral medium supplemented with ergosterol and Tween 80. The organism had a mu max of 0.31 h-1 and a Ks for glucose of 0.
View Article and Find Full Text PDFAppl Environ Microbiol
January 1990
In bakers' yeast, an immediate alcoholic fermentation begins when a glucose pulse is added to glucose-limited, aerobically grown cells. The mechanism of this short-term Crabtree effect was investigated via a comparative enzymic analysis of eight yeast species. It was established that the fermentation rate of the organisms upon transition from glucose limitation to glucose excess is positively correlated with the level of pyruvate decarboxylase (EC 4.
View Article and Find Full Text PDFAppl Environ Microbiol
December 1989
The competition between the yeasts Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 for glucose was studied in sugar-limited chemostat cultures. Under aerobic conditions, C. utilis always successfully completed against S.
View Article and Find Full Text PDFA comparative study was made of the in vitro respiratory capacity of mitochondria isolated from Saccharomyces cerevisiae and Candida utilis grown in glucose-limited chemostat cultures. An electron-microscopic analysis of whole cells revealed that the volume density of mitochondria was the same in both yeasts. Mitochondria from both organisms exhibited respiratory control with NADH, pyruvate + malate, 2-oxoglutarate + acetate or malate, and ethanol.
View Article and Find Full Text PDFThe kinetic parameters of glucose transport in four Crabtree-positive and four Crabtree-negative yeasts were determined. The organisms were grown in aerobic glucose-limited chemostats at a dilution rate of 0.1 h-1.
View Article and Find Full Text PDF