Publications by authors named "Schauwecker P"

Background And Objectives: Mobilization of CD34 cells by stimulation with G-CSF shows considerable variation across stem cell donors. Upfront prediction of CD34 cell counts in peripheral blood based on easily available steady-state parameters would be helpful for the planning of apheresis and stem cell transplantation. Commonly accepted steady-state predictors for the mobilization are gender, body mass index and platelet count.

View Article and Find Full Text PDF

Background: CD157, encoded by BST-1, has been described as a useful flow cytometric marker for the analysis of paroxysmal nocturnal hemoglobinuria (PNH) as it is a glycosylphosphatidylinositol (GPI)-linked molecule highly expressed on normal monocytes and neutrophils. We and others observed isolated CD157 signal dropouts during intended PNH analysis. We hypothesize that these negative populations occur due to an antibody failure.

View Article and Find Full Text PDF

Patients receiving an allogeneic stem cell graft from cytomegalovirus (CMV) seronegative donors are particularly prone to CMV reactivation with a high risk of disease and mortality. Therefore we developed and manufactured a novel vaccine and initiated a clinical phase I trial with a CMV phosphoprotein 65 (CMVpp65)-derived peptide. Ten patients after allogeneic stem cell transplantation received four vaccinations at a biweekly interval.

View Article and Find Full Text PDF

Seizure-induced cell death is believed to be regulated by multiple genetic components in addition to numerous external factors. We previously defined quantitative trait loci that control susceptibility to seizure-induced cell death in FVB/NJ (susceptible) and C57BL/6J (resistant) mice. Two of these quantitative trait loci assigned to chromosomes 18 (Sicd1) and 15 (Sicd2), control seizure-induced cell death resistance.

View Article and Find Full Text PDF

Prior studies with crosses of the FVB/NJ (FVB; seizure-induced cell death-susceptible) mouse and the C57BL/6J (B6; seizure-induced cell death-resistant) mouse revealed the presence of a quantitative trait locus (QTL) on chromosome 15 that influenced susceptibility to kainic acid-induced cell death (Sicd2). In an earlier study, we confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure-induced cell death through the creation of the FVB.B6-Sicd2 congenic strain, and created three interval-specific congenic lines (ISCLs) that encompass Sicd2 on chromosome 15 to fine-map this locus.

View Article and Find Full Text PDF

Background: In patients with acute myocardial infarction (AMI), the number of transplanted autologous bone-marrow cells (BMC) has been linked to improvement in left ventricular ejection fraction (LVEF). Complete obstruction of myocardial microvasculature is indicated by microvascular obstruction (MO) in cardiac magnetic resonance imaging (CMR). We analyzed whether the number of transplanted cells and presence of MO were associated with improved LVEF in the double-blind, placebo-controlled, randomized intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial.

View Article and Find Full Text PDF

Background: Epilepsy is the most common neurological disorder after stroke, affecting more than 50 million persons worldwide. Metabolic disturbances are often associated with epileptic seizures, but the pathogenesis of this relationship is poorly understood. It is known that seizures result in altered glucose metabolism, the reduction of intracellular energy metabolites such as ATP, ADP and phosphocreatine and the accumulation of metabolic intermediates, such as lactate and adenosine.

View Article and Find Full Text PDF

Growing evidence has indicated that genetic factors contribute to the etiology of seizure disorders. Most epilepsies are multifactorial, involving a combination of additive and epistatic genetic variables. However, the genetic factors underlying epilepsy have remained unclear, partially due to epilepsy being a clinically and genetically heterogeneous syndrome.

View Article and Find Full Text PDF

Mouse strains differ from one another in their susceptibility to seizure-induced excitotoxic cell death. Previously, we have demonstrated that mature inbred strains of mice show remarkable genetic differences in susceptibility to the neuropathological consequences of seizures in the kainate model of status epilepticus. At present, while the cellular mechanisms underlying strain-dependent differences in susceptibility remain unclear, some of this variation is assumed to have a genetic basis.

View Article and Find Full Text PDF

Background: Galanin is a neuropeptide with a wide distribution in the central and peripheral nervous systems and whose physiological effects are mediated through three G protein-coupled receptor subtypes, GalR1, GalR2, and GalR3. Several lines of evidence indicate that galanin, as well as activation of the GalR1 receptor, is a potent and effective modulator of neuronal excitability in the hippocampus.

Methodology/principal Findings: In order to test more formally the potential influence of GalR1 on seizure-induced excitotoxic cell death, we conducted functional complementation tests in which transgenic mice that exhibit decreased expression of the GalR1 candidate mRNA underwent kainate-induced status epilepticus to determine if the quantitative trait of susceptibility to seizure-induced cell death is determined by the activity of GalR1.

View Article and Find Full Text PDF

Inbred strains of mice differ in their susceptibility to excitotoxin-induced cell death, but the genetic basis of individual variation is unknown. Prior studies with crosses of the FVB/NJ (seizure-induced cell death susceptible) mouse and the seizure-induced cell death resistant mouse, C57BL/6J, showed the presence of three quantitative trait loci (QTLs), named seizure-induced cell death 1 (Sicd1) to Sicd3. To better localize and characterize the Sicd2 locus, two reciprocal congenic mouse strains were created.

View Article and Find Full Text PDF

We previously have identified phenotypic differences in susceptibility to hippocampal seizure-induced cell death among two inbred strains of mice. We have also reported that the age-related increased susceptibility to the neurotoxic effects of seizure-induced injury is regulated in a strain-dependent manner. In the present study, we wanted to begin to determine the pharmacological mechanism that contributes to variability in the response to the neurotoxic effects of kainate.

View Article and Find Full Text PDF

To assess the effect of autologous bone-marrow cell (BMC) therapy in patients with acute myocardial infarction in a rigorous double-blind, randomized, placebo-controlled trial. Patients with reperfusion >6 hours after symptom onset were randomly assigned in a 2:1 ratio to receive intracoronary BMC or placebo therapy 5 to 7 days after symptom onset. The patients were stratified according to age, acute myocardial infarction localization, and left ventricular (LV) function.

View Article and Find Full Text PDF

Many common diseases and disorders, such as hypertension, diabetes, arthritis, and epilepsy, have a genetic component with a complex genetic architecture. Evidence for a genetic influence on epilepsy emerged in twin studies that reported concordance rates consistently higher in monozygotic than in dizygotic twins (Lennox, 1951; Sillanpää et al., 1991; Berkovic et al.

View Article and Find Full Text PDF

Peptide vaccination constitutes a novel immunotherapeutical approach for the treatment of patients with solid tumors, lymphoma and leukemia. Moreover it might be of use in hematooncological patients for the prevention and therapy of infections like cytomegalovirus (CMV) reactivation due to immunosuppression. To meet good manufacturing practice (GMP) criteria, we introduce here a bio-assay to validate peptide vaccines for peptide content and bio-activity.

View Article and Find Full Text PDF

Ovarian steroid hormones influence not only seizure phenomena, but also the neuronal cell death that follows. In the present study, we applied two models of ovarian steroid loss, ovariectomy and chemically-induced ovarian failure, to evaluate kainate-induced seizure activity and the susceptibility of hippocampal neurons to seizure-induced neurodegeneration. Young adult female FVB/NJ mice were ovariectomized with (OVX+E, n=6) or without (OVX, n=8) estrogen replacement.

View Article and Find Full Text PDF

Purpose: Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas.

View Article and Find Full Text PDF

While the onset and extent of epilepsy increases in the aged population, the reasons for this increased incidence remain unexplored. The present study used two inbred strains of mice (C57BL/6J and FVB/NJ) to address the genetic control of age-dependent neurodegeneration by building upon previous experiments that have identified phenotypic differences in susceptibility to hippocampal seizure-induced cell death. We determined if seizure induction and seizure-induced cell death are affected differentially in young adult, mature, and aged male C57BL/6J and FVB/NJ mice administered the excitotoxin, kainic acid.

View Article and Find Full Text PDF

Inbred strains of mice differ in their susceptibility to excitotoxin-induced cell death, but the genetic basis of individual variation in differential susceptibility is unknown. Previously, we identified a highly significant quantitative trait locus (QTL) on chromosome 18 that influenced susceptibility to kainic acid-induced cell death (Sicd1). Comparison of susceptibility to seizure-induced cell death between reciprocal congenic lines for Sicd1 and parental background mice indicates that genes influencing this trait were captured in both strains.

View Article and Find Full Text PDF

C57BL/6J (B6) and FVB/NJ (FVB) mice are phenotypically distinct in their susceptibility to seizure-induced cell death after kainate administration. Previous studies using quantitative trait loci (QTLs) mapping established that the distal region of mouse chromosome 18 contains a gene(s) that is probably responsible for the difference in seizure-induced cell death susceptibility between two inbred strains, B6 and FVB, that are relatively resistant and susceptible, respectively, to seizure-induced cell death. The genetic locus has been mapped to a approximately 12-centimorgan region of chromosome 18, designated as seizure-induced cell death 1 (Sicd1).

View Article and Find Full Text PDF

Background: Catumaxomab is an antibody that binds with one arm epithelial cell adhesion molecule (EpCAM) positive tumors and with the other arm CD3+ T cells. Intravenous application of therapeutic antibodies may result in intravascular cytokine release.

Aim: In this pilot trial we assessed whether cytokine release can be controlled by ex vivo cell opsonization and cytokine wash-out before administration of catumaxomab, preserving its anti-cancer activity.

View Article and Find Full Text PDF

Previous studies have suggested that there is a genetic influence on the regulation of cell proliferation and survival within the hippocampus. However, the links between perturbations in neurogenesis and genomic control remain unclear. Here, we examined the impact of mouse strain on four parameters of the neurogenic program, proliferation, migration, differentiation and survival in the dentate gyrus of the hippocampus as a means of determining whether allelic variation of two independently derived mouse strains, FVB/NJ and C57BL/6J, modulates basal adult murine dentate gyrus neurogenesis.

View Article and Find Full Text PDF