Picophytoplankton are important primary producers, but not always adequately recognized, for example, due to methodological limitations. In this study, we combined flow cytometry and metabarcoding to investigate seasonal and spatial patterns of picophytoplankton abundance and community composition in the Elbe estuary. Due to the mixing of freshwater and seawater and the tidal currents this ecosystem is characterized by typical estuarine features such as salinity gradients and high turbidity.
View Article and Find Full Text PDFIn estuaries, phytoplankton are faced with strong environmental forcing (e.g. high turbidity, salinity gradients).
View Article and Find Full Text PDFPhytoplankton are usually considered autotrophs, but an increasing number of studies show that many taxa are able also to use organic carbon. Acquiring nutrients and energy from different sources might enable an efficient uptake of required substances and provide a strategy to deal with varying resource availability, especially in highly dynamic ecosystems such as estuaries. In our study, we investigated the effects of 31 organic carbon sources on the growth (proxied by differences in cell counts after 24 h exposure) of 17 phytoplankton strains from the Elbe estuary spanning four functional groups.
View Article and Find Full Text PDFDisasters such as the Ahr Valley flood in 2021 make us aware of the importance of functioning healthcare facilities. Their functionality depends on the availability of drinking water. Water safety planning is a long-established method to increase the safety of water utilities.
View Article and Find Full Text PDFVariation of the digester temperature during the year enables the operation of digesters as seasonal heat storage contributing to a holistic heat management at water resource recovery facilities. Full- and lab-scale process data were conducted to examine the effect of the digester temperature on process stability, sludge liquor quality, and dewaterability. Both full- and lab-scale digesters show a stable anaerobic degradation process with a hydraulic retention time of more than 20 days and organic load rates up to 2.
View Article and Find Full Text PDFMarine viruses are a major driver of phytoplankton mortality and thereby influence biogeochemical cycling of carbon and other nutrients. Phytoplankton-targeting viruses are important components of ecosystem dynamics, but broad-scale experimental investigations of host-virus interactions remain scarce. Here, we investigated in detail a picophytoplankton (size 1 µm) host's responses to infections by species-specific viruses from distinct geographical regions and different sampling seasons.
View Article and Find Full Text PDFBackground And Aims: Stomatal regulation allows plants to promptly respond to water stress. However, our understanding of the impact of above and belowground hydraulic traits on stomatal regulation remains incomplete. The objective of this study was to investigate how key plant hydraulic traits impact transpiration of maize during soil drying.
View Article and Find Full Text PDFCo-substrates can increase gas production in a digester significantly. The characteristic properties of substrates, depending on the amounts added, influence the processes in the digester reactor. As a consequence, they can have an impact on the buffer capacity, pH value, C:N ratio, dewaterability of the digested sludge and introduce contaminants to the digester among others.
View Article and Find Full Text PDFGlobal warming is associated with an increase in sea surface temperature and its variability. The consequences of evolving in variable, fluctuating environments are explored by a large body of theory: when populations evolve in fluctuating environments the frequency of fluctuations determines the shapes of tolerance curves (indicative of habitats that organisms can inhabit) and trait reaction norms (the phenotypes that organisms display across these environments). Despite this well-established theoretical backbone, predicting how trait and tolerance curves will evolve in organisms at the foundation of marine ecosystems remains a challenge.
View Article and Find Full Text PDFPhytoplankton exist in genetically diverse populations, but are often studied as single lineages (single strains), so that interpreting single-lineage studies relies critically on understanding how microbial growth differs with social milieu, defined as the presence or absence of conspecifics. The properties of lineages grown alone often fail to predict the growth of these same lineages in the presence of conspecifics, and this discrepancy points towards an opportunity to improve our understanding of the factors that affect lineage growth rates. We demonstrate that different lineages of a marine picoplankter modulate their maximum lineage growth rate in response to the presence of non-self conspecifics, even when resource competition is effectively absent.
View Article and Find Full Text PDFDewatered digested sludge and compost may act as a conduit for microplastics (<5 mm) in terrestrial and subsequently aquatic systems. However, standardized methods for microplastics analyses are lacking. Thus, the aim is to demonstrate the applicability of wet-sieving as a way to quantify large microplastic particles (MPP, 1-5 mm) in dewatered digested sludge and compost.
View Article and Find Full Text PDFPhosphorus (P) is an essential element to all living beings but also a finite resource. P-related problems center around broken P cycles from local to global scales. This paper presents outcomes from the 9th International Phosphorus Workshop (IPW9) held 2019 on how to move towards a sustainable P management.
View Article and Find Full Text PDFArsenic pollution is a widespread threat to marine life, but the ongoing rise pCO levels is predicted to decrease bio-toxicity of arsenic. However, the effects of arsenic toxicity on marine primary producers under elevated pCO are not well characterized. Here, we studied the effects of arsenic toxicity in three globally distributed diatom species (Phaeodactylum tricornutum, Thalassiosira pseudonana, and Chaetoceros mulleri) after short-term acclimation (ST, 30 days), medium-term exposure (MT, 750 days), and long-term (LT, 1460 days) selection under ambient (400 µatm) and elevated (1000 and 2000 µatm) pCO.
View Article and Find Full Text PDFBiodiversity affects ecosystem function, and how this relationship will change in a warming world is a major and well-examined question in ecology. Yet, it remains understudied for pico-phytoplankton communities, which contribute to carbon cycles and aquatic food webs year-round. Observational studies show a link between phytoplankton community diversity and ecosystem stability, but there is only scarce causal or empirical evidence.
View Article and Find Full Text PDFThe efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short-term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long-term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short-term increases in temperature.
View Article and Find Full Text PDFWater resource recovery facilities (WRRF) can make an important contribution to increase the share of renewable energies in Germany. In this context, it is important to utilize unused digester capacities on WRRF. In addition, a demand-orientated biogas production could synchronize electricity demand and electricity generation and improve the overall energetic balance of the WRRF.
View Article and Find Full Text PDFWe compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division.
View Article and Find Full Text PDFRelating the temperature dependence of photosynthetic biomass production to underlying metabolic rates in autotrophs is crucial for predicting the effects of climatic temperature fluctuations on the carbon balance of ecosystems. We present a mathematical model that links thermal performance curves (TPCs) of photosynthesis, respiration, and carbon allocation efficiency to the exponential growth rate of a population of photosynthetic autotroph cells. Using experiments with the green alga, , we apply the model to show that the temperature dependence of carbon allocation efficiency is key to understanding responses of growth rates to warming at both ecological and longer-term evolutionary timescales.
View Article and Find Full Text PDFThe PDF version of this Article was updated shortly after publication following an error which resulted in the Φ symbol being omitted from the left hand side of equation 8. The HTML version was correct from the time of publication.
View Article and Find Full Text PDFDiatoms contribute roughly 20% of global primary production, but the factors determining their ability to adapt to global warming are unknown. Here we quantify the capacity for adaptation to warming in the marine diatom Thalassiosira pseudonana. We find that evolutionary rescue under severe (32 °C) warming is slow, but adaptation to more realistic scenarios where temperature increases are moderate (26 °C) or fluctuate between benign and severe conditions is rapid and linked to phenotypic changes in metabolic traits and elemental composition.
View Article and Find Full Text PDFUnderstanding how changes in temperature affect interspecific competition is critical for predicting changes in ecological communities with global warming. Here, we develop a theoretical model that links interspecific differences in the temperature dependence of resource acquisition and growth to the outcome of pairwise competition in phytoplankton. We parameterised our model with these metabolic traits derived from six species of freshwater phytoplankton and tested its ability to predict the outcome of competition in all pairwise combinations of the species in a factorial experiment, manipulating temperature and nutrient availability.
View Article and Find Full Text PDFTrophic interactions are important determinants of the structure and functioning of ecosystems. Because the metabolism and consumption rates of ectotherms increase sharply with temperature, there are major concerns that global warming will increase the strength of trophic interactions, destabilizing food webs, and altering ecosystem structure and function. We used geothermally warmed streams that span an 11°C temperature gradient to investigate the interplay between temperature-driven selection on traits related to metabolism and resource acquisition, and the interaction strength between the keystone gastropod grazer, Radix balthica, and a common algal resource.
View Article and Find Full Text PDFThe elemental composition of phytoplankton (C:N:P stoichiometry) is a critical factor regulating nutrient cycling, primary production and energy transfer through planktonic food webs. Our understanding of the multiple direct and indirect mechanisms through which temperature controls phytoplankton stoichiometry is however incomplete, increasing uncertainty in the impacts of global warming on the biogeochemical functioning of aquatic ecosystems. Here, we use a decade-long warming experiment in outdoor freshwater ponds to investigate how temperature-driven turnover in species composition and shifts in stoichiometric traits within species through local thermal adaptation contribute to the effects of warming on seston stoichiometry.
View Article and Find Full Text PDFPhytoplankton photosynthesis is a critical flux in the carbon cycle, accounting for approximately 40% of the carbon dioxide fixed globally on an annual basis and fuelling the productivity of aquatic food webs. However, rapid evolutionary responses of phytoplankton to warming remain largely unexplored, particularly outside the laboratory, where multiple selection pressures can modify adaptation to environmental change. Here, we use a decade-long experiment in outdoor mesocosms to investigate mechanisms of adaptation to warming (+4 °C above ambient temperature) in the green alga Chlamydomonas reinhardtii, in naturally assembled communities.
View Article and Find Full Text PDF