Publications by authors named "Schauer-Vukasinovic V"

A multi-component reaction strategy was used for the fast and efficient synthesis of amide isosteres of known Bcl-2 inhibitors capable of disrupting protein-protein interactions. Ugi reaction and a subsequent nucleophilic aromatic substitution reaction provide a versatile path to libraries of compounds similar to Abbott's acylsulfonamides. Modeling arguments are used to explain the inferior activity of the amide as opposed to the sulfonamide series.

View Article and Find Full Text PDF

This work demonstrates the use of the protein calmodulin, CaM, as an affinity tag for the reversible immobilization of enzymes on surfaces. Our strategy takes advantage of the of the reversible, calcium-mediated binding of CaM to its ligand phenothiazine and of the ability to produce fusion proteins between CaM and a variety of enzymes to reversibly immobilize enzymes in an oriented fashion to different surfaces. Specifically, we employed two different enzymes, organophosphorus hydrolase (OPH) and beta-lactamase and two different solid supports, a silica surface and cellulose membrane modified by covalently attaching a phenothiazine ligand, to demonstrate the versatility of our immobilization method.

View Article and Find Full Text PDF

Tubulysin A (tubA) is a natural product isolated from a strain of myxobacteria that has been shown to depolymerize microtubules and induce mitotic arrest. The potential of tubA as an anticancer and antiangiogenic agent is explored in the present study. tubA shows potent antiproliferative activity in a panel of human cancer cell lines irrespective of their multidrug resistance properties.

View Article and Find Full Text PDF

A terphenyl alpha-helix mimetic scaffold recognized to be capable of disrupting protein-protein interactions was structurally morphed into an easily amenable and versatile multicomponent reaction (MCR) backbone. The design, modular in-parallel library synthesis, initial cell based biological data, and preliminary in vitro screening for the disruption of the Bcl-w/Bak protein-protein interaction by representatives of the MCR derived scaffold are presented.

View Article and Find Full Text PDF
Article Synopsis
  • A new class of HIV-1 protease inhibitors has been created using a fresh multicomponent chemistry strategy.
  • This approach combines innovative chemistry with structure-based drug design techniques.
  • The development aims to enhance the effectiveness of treatments against HIV-1.
View Article and Find Full Text PDF

Surfactant protein B (SP-B) is a critical component of pulmonary surfactant, and a deficiency of active SP-B results in fatal respiratory failure. SP-B is synthesized by type-II pneumocytes as a 42-kDa propeptide (proSP-B), which is posttranslationally processed to an 8-kDa surface-active protein. Napsin A is an aspartic protease expressed in type-II pneumocytes.

View Article and Find Full Text PDF

The newly-discovered human aspartic proteinase, napsin A was not susceptible to protein inhibitors from potato, squash or yeast but was weakly inhibited by the 17 kDa polypeptide from Ascaris lumbricoides and potently by isovaleryl and lactoyl-pepstatins. A series of synthetic inhibitors was also investigated which contained in the P(1)-P(1)' positions the dipeptide analogue statine or its phenylalanine or cyclohexylalanine homologues and in which the residues occupying P(4)-P(3)' were varied systematically. On this basis, the active site of napsin A can be readily distinguished from other human aspartic proteinases.

View Article and Find Full Text PDF

Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E.

View Article and Find Full Text PDF

Human napsin A is an aspartic proteinase highly expressed in kidney and lung. To elucidate whether napsin A is excreted in the urine we have performed an immunochemical study using anti-napsin A polyclonal antibody. As a result an immunoreactive band at approx.

View Article and Find Full Text PDF

Fluorogenic substrates for assaying novel proteolytic enzymes could be rapidly identified using an easy, solid-phase combinatorial assay technology. The methodology was validated with leader peptidase of Escherichia coli using a subset of an intramolecularly quenched fluorogenic peptide library. The technique was extended toward the discovery of substrates for a new aspartic protease of pharmaceutical relevance (human napsin A).

View Article and Find Full Text PDF

A full-length cDNA clone coding for rat napsin was identified by homology search of the ZooSeq rat EST database (Incyte). Northern blot analysis revealed high expression of napsin mRNA transcripts in kidney, lung and spleen. Western blot analysis showed that rat napsin is expressed in kidney as a 50-kDa, highly glycosylated, monomeric protein.

View Article and Find Full Text PDF

Recombinant human napsin A expressed in human embryonic kidney 293 cells was purified to homogeneity by a single-step procedure using part of napsin A propeptide as affinity ligand. N-Terminal amino-acid sequencing of the purified enzyme identified the mature form of napsin A. Treatment of purified napsin A with endoglycosidases F and H resulted in a decrease in its molecular mass from 39 kDa to approximately 37 kDa, confirming that napsin A is glycosylated.

View Article and Find Full Text PDF

A novel aspartic proteinase, called napsin, has recently been found in human and mouse. Due to high similarity with cathepsin D a structural model of human napsin A could be built. Based on this model a potential epitope SFYLNRDPEEPDGGE has been identified, which was used to immunize rabbits.

View Article and Find Full Text PDF

A method to purify proteins by fusing them to the Ca2+-dependent protein calmodulin is described by using glutathione-S-transferase (GST) from Schistosoma japonicum as a model. Glutathione-S-transferase was genetically fused to calmodulin (CaM). The designed GST-CaM fusion protein has a selective factor Xa cleavage site located between the C-terminus of GST and the N-terminus of CaM.

View Article and Find Full Text PDF