Embryo quality assessment by optical imaging is increasing in popularity. Among available optical techniques, light sheet microscopy has emerged as a superior alternative to confocal microscopy due to its geometry, enabling faster image acquisition with reduced photodamage to the sample. However, previous assessments of photodamage induced by imaging may have failed to measure more subtle impacts.
View Article and Find Full Text PDFDistinguishing between microscopic variances in temperature in both space and time with high precision can open up new opportunities in optical sensing. In this paper, we present a novel approach to optically measure temperature from the fluorescence of erbium:ytterbium doped tellurite glass, with fast temporal resolution at micron-scale localisation over an area with sub millimetre spatial dimensions. This confocal-based approach provides a micron-scale image of temperature variations over a 200 m 200 m field of view at sub-1 second time intervals.
View Article and Find Full Text PDFReliable identification of high-value products such as whisky is vital due to rising issues of brand substitution and quality control in the industry. We have developed a novel framework that can perform whisky analysis directly from raw spectral data with no human intervention by integrating machine learning models with a portable Raman device. We demonstrate that machine learning models can achieve over 99% accuracy in brand or product identification across twenty-eight commercial samples.
View Article and Find Full Text PDFCellular metabolism is a key regulator of energetics, cell growth, regeneration, and homeostasis. Spatially mapping the heterogeneity of cellular metabolic activity is of great importance for unraveling the overall cell and tissue health. In this regard, imaging the endogenous metabolic cofactors, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), with subcellular resolution and in a noninvasive manner would be useful to determine tissue and cell viability in a clinical environment, but practical use is limited by current imaging techniques.
View Article and Find Full Text PDFOptical techniques hold great potential to detect and monitor disease states as they are a fast, non-invasive toolkit. Raman spectroscopy (RS) in particular is a powerful label-free method capable of quantifying the biomolecular content of tissues. Still, spontaneous Raman scattering lacks information about tissue morphology due to its inability to rapidly assess a large field of view.
View Article and Find Full Text PDFJ Assist Reprod Genet
August 2022
Purpose: A current focus of the IVF field is non-invasive imaging of the embryo to quantify developmental potential. Such approaches use varying wavelengths to gain maximum biological information. The impact of irradiating the developing embryo with discrete wavelengths of light is not fully understood.
View Article and Find Full Text PDFWe present a new coating procedure to prepare optical fibre sensors suitable for use with protein analytes. We demonstrate this through the detection of AlexaFluor-532 tagged streptavidin by its binding to D-biotin that is functionalised onto an optical fibre, incorporation in a silk fibroin fibre coating. The D-biotin was covalently attached to a silk-binding peptide to provide SBP-biotin, which adheres the D-biotin to the silk-coated fibre tip.
View Article and Find Full Text PDFWidely wavelength-tunable femtosecond light sources in a compact, robust footprint play a central role in many prolific research fields and technologies, including medical diagnostics, biophotonics, and metrology. Fiber lasers are on the verge in the development of such sources, yet widespan spectral tunability of femtosecond pulses remains a pivotal challenge. Dispersive wave generation, also known as Cherenkov radiation, offers untapped potentials to serve these demands.
View Article and Find Full Text PDFAtomically thin transition metal dichalcogenides are highly promising for integrated optoelectronic and photonic systems due to their exciton-driven linear and nonlinear interactions with light. Integrating them into optical fibers yields novel opportunities in optical communication, remote sensing, and all-fiber optoelectronics. However, the scalable and reproducible deposition of high-quality monolayers on optical fibers is a challenge.
View Article and Find Full Text PDFSens Actuators B Chem
November 2020
Quantitative polymerase chain reaction (qPCR), the real-time amplification and measurement of a targeted DNA molecule, has revolutionized the biological sciences and is routinely applied in areas such as medical diagnostics, forensics, and agriculture. Despite widescale use of qPCR technology in the lab, the availability of low-cost and high-speed portable systems remains one of the barriers to routine in-field implementation. Here we propose and demonstrate a potential solution using a photonics-based qPCR system.
View Article and Find Full Text PDFUnfertilised eggs (oocytes) release chemical biomarkers into the medium surrounding them. This provides an opportunity to monitor cell health and development during assisted reproductive processes if detected in a non-invasive manner. Here we report the measurement of pH using an optical fibre probe, OFP1, in 5 μL drops of culture medium containing single mouse cumulus oocyte complexes (COCs).
View Article and Find Full Text PDFLabel-free biosensors are important tools for clinical diagnostics and for studying biology at the single molecule level. The development of optical label-free sensors has allowed extreme sensitivity but can expose the biological sample to photodamage. Moreover, the fragility and complexity of these sensors can be prohibitive to applications.
View Article and Find Full Text PDFHyperthermia is most dangerous clinical symptom of acute MDMA administration, and a key factor related to potentially life-threatening MDMA-induced complications. MDMA induces a consistently faster onset of brain hyperthermia when compared to a delayed and moderate hyperthermia in the body, and the most harmful effects of MDMA are related to its modulation of neural functions. The primary focus of this study was to investigate the effects of minocycline, a centrally acting tetracycline derivative on MDMA-induced brain hyperthermia at high ambient temperature.
View Article and Find Full Text PDFWe demonstrate that exposed-core microstructured optical fibers offer multiple degrees of freedom for tailoring third-harmonic generation through the core diameter, input polarization, and nanofilm deposition. Varying these parameters allows control of the phase-matching position between an infrared pump wavelength and the generated visible wavelengths. In this Letter, we show how increasing the core diameter over previous experiments (2.
View Article and Find Full Text PDFBackground: The localized monitoring of brain temperature is crucial to the understanding of the mechanisms underlying brain hyperthermia, such as that caused by stimulant drugs. Many animal studies investigating brain hyperthermia have utilized thermocouple electrodes for temperature measurement, however optical fiber sensors have proven to be an attractive alternative to conventional measurement techniques. Despite their advantages, optical fiber sensors in their current form have struggled to find effective use in studies involving free-moving animals.
View Article and Find Full Text PDFIn peripheral nerve under hyperglycemic conditions high flux of d-glucose through the polyol pathway drives an aberrant redox state contributing to neurodegeneration in diabetic sensorimotor polyneuropathy (DSPN). Sirtuins, including SIRT2, detect the redox state via the NAD/NADH ratio to regulate mitochondrial function via, in part, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). In adult dorsal root ganglia (DRG) sensory neurons mitochondrial dysfunction has been proposed as an etiological factor in dying-back neuropathy in diabetes.
View Article and Find Full Text PDFThe ability to visualize structure while simultaneously measuring chemical or physical properties of a biological tissue has the potential to improve our understanding of complex biological processes. We report the first miniaturized single-fiber-based imaging+sensing probe capable of simultaneous optical coherence tomography (OCT) imaging and temperature sensing. An OCT lens is fabricated at the distal end of a double-clad fiber, including a thin layer of rare-earth-doped tellurite glass to enable temperature measurements.
View Article and Find Full Text PDFIntraoperative detection of tumorous tissue is an important unresolved issue for cancer surgery. Difficulty in differentiating between tissue types commonly results in the requirement for additional surgeries to excise unremoved cancer tissue or alternatively in the removal of excess amounts of healthy tissue. Although pathologic methods exist to determine tissue type during surgery, these methods can compromise postoperative pathology, have a lag of minutes to hours before the surgeon receives the results of the tissue analysis, and are restricted to excised tissue.
View Article and Find Full Text PDFThis work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.
View Article and Find Full Text PDFMicrostructured optical fibers, particularly those with a suspended-core geometry, have frequently been argued as efficient evanescent-field fluorescence-based sensors. However, to date there has not been a systematic comparison between such fibers and the more common geometry of a multi-mode fiber tip sensor. In this paper we make a direct comparison between these two fiber sensor geometries both theoretically and experimentally.
View Article and Find Full Text PDFWe report the fabrication of the first extruded hollow core optical fiber with a single ring of cladding holes, and its use in a chemical sensing application. These single suspended ring structures show antiresonance reflection optical waveguiding (ARROW) features in the visible part of the spectrum. The impact of preform pressurization on the geometry of these fibers is determined by the size of the different hole types in the preform.
View Article and Find Full Text PDF