Objectives: To develop a reliable instrument to objectively assess feedback quality, to use it for assessment of the quality of students' narrative feedback and to be used as a self-assessment instrument for students in their learning process.
Methods: In a retrospective cohort study, 635 feedback narratives, provided by small groups of Medicine and Biomedical Sciences undergraduate students, have been extracted from available quarterly curriculum evaluation surveys. A rubric was developed based on literature and contents of our feedback education.
Heme oxygenase (HO)-1 is the inducible isoform of the heme-degrading enzyme HO, which is upregulated by multiple stress stimuli. HO-1 has major immunomodulatory and anti-inflammatory effects via its cell-type-specific functions in mononuclear cells. Contradictory findings have been reported on HO-1 regulation by the Toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS) in these cells.
View Article and Find Full Text PDFImpaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO-1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO-2 deficient mice is impaired with exorbitant inflammation and absence of HO-1 expression.
View Article and Find Full Text PDFHeme is the functional group of diverse hemoproteins and crucial for many cellular processes. However, heme is increasingly recognized as a culprit for a wide variety of pathologies, including sepsis, malaria, and kidney failure. Excess of free heme can be detrimental to tissues by mediating oxidative and inflammatory injury.
View Article and Find Full Text PDFWound healing is an intricate process requiring the concerted action of keratinocytes, fibroblasts, endothelial cells, and macrophages. Here, we review the literature on normal wound healing and the pathological forms of wound healing, such as hypertrophic or excessive scar formation, with special emphasis on the heme-heme oxygenase (HO) system and the versatile effector molecules that are formed after HO-mediated heme degradation. Excessive scar formation following wounding is thought to relate to prolonged oxidative and inflammatory stress in the skin.
View Article and Find Full Text PDFBackground: We previously identified curcumin as a potent inducer of fibroblast apoptosis, which could be used to treat hypertrophic scar formation. Here we investigated the underlying mechanism of this process.
Principal Findings: Curcumin-induced apoptosis could not be blocked by caspase-inhibitors and we could not detect any caspase-3/7 activity.
Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response against ROS.
View Article and Find Full Text PDFFibroblast apoptosis plays a crucial role in normal and pathological scar formation and therefore we studied whether the putative apoptosis-inducing factor curcumin affects fibroblast apoptosis and may function as a novel therapeutic. We show that 25-microM curcumin causes fibroblast apoptosis and that this could be inhibited by co-administration of antioxidants N-acetyl-l-cysteine (NAC), biliverdin or bilirubin, suggesting that reactive oxygen species (ROS) are involved. This is supported by our observation that 25-microM curcumin caused the generation of ROS, which could be completely blocked by addition of NAC or bilirubin.
View Article and Find Full Text PDFOsteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from the iliac crest, depending on age and overall physical fitness.
View Article and Find Full Text PDFOsteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an anabolic factor that can counteract many IL-1-induced effects.
View Article and Find Full Text PDFObjective: Osteoarthritis (OA) is a joint disease characterized by osteophyte development, fibrosis, and articular cartilage damage. Effects of exogenous transforming growth factor beta (TGFbeta) isoforms and bone morphogenetic proteins (BMPs) suggest a role for these growth factors in the pathogenesis of OA. The aim of this study was to elucidate the role of endogenous TGFbeta and BMP during papain-induced OA-like changes in mice.
View Article and Find Full Text PDFObjective: To assess if various biological responses to transforming growth factor-beta (TGF-beta) in chondrocytes are differentially regulated by Smad-6 and Smad-7.
Design: Adenoviral overexpression of Smad-6 or -7 mRNA in a chondrocyte cell line was determined via semi-quantitative RT-PCR and protein overexpression was studied by immunocytochemistry. Furthermore, the effect of Smad-6 and -7 overexpression on TGF-beta-induced PAI-1 and aggrecan mRNA upregulation was studied via quantitative RT-PCR.
J Chromatogr B Analyt Technol Biomed Life Sci
March 2003
To study the (patho)physiological role of transforming growth factor-beta (TGF-beta), potent and selective inhibitors are necessary. Since TGF-beta signaling is initiated by the high affinity binding to the type II receptor (RII), the extracellular part of RII (solRII) can function as a TGF-beta antagonist. SolRII was cloned and large-scale protein synthesis was performed in the yeast Pichia pastoris expression system.
View Article and Find Full Text PDFObjective: To investigate if a difference exists between young and old mice in the response of articular cartilage to interleukin 1 (IL1) and transforming growth factor beta (TGFbeta) alone or in combination.
Methods: The interaction of IL1 and TGFbeta was studied in cartilage of young (three months) and old mice (18 months) both in vivo and in vitro. Therefore, IL1, TGFbeta, or IL1 together with TGFbeta was injected into the knee joints of mice on days 1, 3, and 5 before harvest of the patellae on day 6.
Osteoarthritis has as main characteristics the degradation of articular cartilage and the formation of new bone at the joint edges, so-called osteophytes. In this study enhanced expression of TGF-beta1 and -beta3 was detected in developing osteophytes and articular cartilage during murine experimental osteoarthritis. To determine the role of endogenous TGF-beta on osteophyte formation and articular cartilage, TGF-beta activity was blocked via a scavenging soluble TGF-beta-RII.
View Article and Find Full Text PDFGrowth factors are obvious tools to enhance cartilage repair. Understanding of reactivities in normal and arthritic cartilage and potential side effects on other compartments in the joint will help to identify possibilities and limitations. Growth factor responses have been evaluated in normal and diseased murine knees.
View Article and Find Full Text PDF