Publications by authors named "Scharff R"

Historically, low-moisture foods were considered to have minimal microbial risks. However, they have been linked to many high-profile multistate outbreaks and recalls in recent years, drawing research and extension attention to low-moisture food safety. Limited studies have assessed the food safety research and extension needs for the low-moisture food industry.

View Article and Find Full Text PDF

The objective of this study was to examine changes in healthcare-seeking behaviors and diagnostic practices around foodborne illness during the COVID-19 pandemic in a large university-based health system. A retrospective cohort study of individuals diagnosed with pathogens commonly transmitted through food between 2015 and 2020 was undertaken using electronic medical record data. Regression models were used to compare measured incidence rates of various foodborne pathogens as well as associated healthcare-seeking behaviors during the pandemic year of 2020 to previous years.

View Article and Find Full Text PDF

The emergence of the field of soft robotics has led to an interest in suction cups as auxiliary structures on soft continuum arms to support the execution of manipulation tasks. This application poses demanding requirements on suction cups with respect to sensorization, adhesion under non-ideal contact conditions, and integration into fully soft systems. The octopus can serve as an important source of inspiration for addressing these challenges.

View Article and Find Full Text PDF

Leafy green vegetables are a major source of foodborne illnesses. Nevertheless, few studies have attempted to estimate attribution and burden of illness estimates for leafy greens. This study combines results from three outbreak-based attribution models with illness incidence and economic cost models to develop comprehensive pathogen-specific burden estimates for leafy greens and their subcategories in the United States.

View Article and Find Full Text PDF

The most comprehensive and inclusive estimates for the economic burden of foodborne illness yield values as high as $97.4 billion USD annually. However, broad incidence and cost estimates have limited use if they cannot be attributed to specific foods, for the purposes of food safety control.

View Article and Find Full Text PDF

We present a portable CO laser heating system for in situ x-ray absorption spectroscopy (XAS) studies at 16-BM-D (High Pressure Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory). Back scattering optical measurements are made possible by the implementation of a Ge beamsplitter. Optical pyrometry is conducted in the near-infrared, and our temperature measurements are free of chromatic aberration due to the implementation of the peak-scaling method [A.

View Article and Find Full Text PDF

Biomimetic machines able to integrate with natural and social environments will find ubiquitous applications, from biodiversity conservation to elderly daily care. Although artificial actuators have reached the contraction performances of muscles, the versatility and grace of the movements realized by the complex arrangements of muscles remain largely unmatched. Here, we present a class of pneumatic artificial muscles, named GeometRy-based Actuators that Contract and Elongate (GRACE).

View Article and Find Full Text PDF

Abstract: Fruit drying has traditionally received little food safety attention in spite of Salmonella outbreaks and recalls involving low-moisture foods. This study was conducted to assess the food safety implications during the home drying process, with dried apples as an example. A cohort of home apple dryers (n = 979) participated in an online survey through Qualtrics XM in May 2021.

View Article and Find Full Text PDF

We present OpenFish: an open source soft robotic fish which is optimized for speed and efficiency. The soft robotic fish uses a combination of an active and passive tail segment to accurately mimic the thunniform swimming mode. Through the implementation of a novel propulsion system that is capable of achieving higher oscillation frequencies with a more sinusoidal waveform, the open source soft robotic fish achieves a top speed of .

View Article and Find Full Text PDF

Soft robots are typically intended to operate in highly unpredictable and unstructured environments. Although their soft bodies help them to passively conform to their environment, the execution of specific tasks within such environments often requires the help of an operator that supervises the interaction between the robot and its environment and adjusts the actuation inputs in order to successfully execute the task. However, direct observation of the soft robot is often impeded by the environment in which it operates.

View Article and Find Full Text PDF

Sitting comfort is an important factor for passengers in selecting cars, airlines, etc. This paper proposes a soft robotic module that can be integrated into the seat cushion to provide better comfort experiences to passengers. Building on rapid manufacturing technologies and a data-driven approach, the module can be controlled to sense the applied force and the displacement of the top surface and actuate according to four designed modes.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells that underlie the neurosensory retina are essential for the maintenance of photoreceptor cells and hence vision. Interactions between the RPE and their basement membrane, i.e.

View Article and Find Full Text PDF

Individual burden and cost of hemolytic uremic syndrome (HUS)-a medical condition characterized by acute kidney failure-can be substantial when accounting for long-term health outcomes (LTHOs). Because of the low incidence of HUS, evaluation of associated LTHOs is often restricted to physician and outbreak cohorts, both of which may not be representative of all HUS cases. This exploratory study recruited participants from private social media support groups for families of HUS cases to identify potential LTHOs and costs of HUS that are not currently measured.

View Article and Find Full Text PDF
Article Synopsis
  • The economic burden of foodborne illness in the U.S. is estimated at up to $90 billion annually, with significant costs linked to specific products like meat and poultry.
  • A study calculated the cost of foodborne illnesses from 29 pathogens in meat and poultry, finding that these products account for about 30.9% of foodborne illnesses, leading to around 2.9 million annual sicknesses and economic costs up to $20.3 billion.
  • The most expensive food-pathogen combinations identified include Campylobacter in poultry and Salmonella in chicken and pork, with costs reaching nearly $7 billion for Campylobacter alone.
View Article and Find Full Text PDF

By October 2020, states across the nation must deliver benefits for the WIC program via electronic benefits transfer, also referred to as eWIC. The state of Ohio made the transition from 2014 to 2015 and staggered implementation across counties. In this article, we present county-level data on the specific dates Ohio counties changed to eWIC.

View Article and Find Full Text PDF

The economic evaluation of food safety interventions is an important tool that practitioners and policy makers use to assess the efficacy of their efforts. These evaluations are built on models that are dependent on accurate estimation of numerous input variables. In many cases, however, there is no data available to determine input values and expert opinion is used to generate estimates.

View Article and Find Full Text PDF

The increased frequency with which people are dining out coupled with an increase in the publicity of foodborne disease outbreaks has led the public to an increased awareness of food safety issues associated with food service establishments. To accommodate consumer needs, local health departments have increasingly publicized food establishments' health inspection scores. The objective of this study was to estimate the effect of the color-coded inspection score disclosure system in place since 2006 in Columbus, OH, by controlling for several confounding factors.

View Article and Find Full Text PDF

Conjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can differ due to intermolecular interaction.

View Article and Find Full Text PDF

Objective This study compared knowledge and food-handling behavior after pathogen-specific (experimental treatment) versus basic food safety instruction (active control) presented during nutrition education classes for low-income English- and Spanish-language pregnant women. Methods Subjects (n = 550) were randomly assigned to treatment groups in two different locations in the United States. Food safety instruction was part of an 8-lesson curriculum.

View Article and Find Full Text PDF

The synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate.

View Article and Find Full Text PDF

We have prepared energetic nitrate ester derivatives of 1,2,4,5-tetrazine and 1,2,4-triazolo[4,3-b]-[1,2,4,5]-tetrazine ring systems as model compounds to study the electrochemical behavior of tetrazines in the presence of explosive groups. The model compounds showed lower thermal stabilities relative to PETN (pentaerythritol tetranitrate), but slightly improved mechanical sensitivities. The presence of electron-rich amine donors leads to a cathodic shift of the tetrazine redox potentials relative to those of previously reported tetrazine explosives.

View Article and Find Full Text PDF

Time-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing the optical range of excitation.

View Article and Find Full Text PDF

The PulseNet surveillance system is a molecular subtyping network of public health and food regulatory agency laboratories designed to identify and facilitate investigation of foodborne illness outbreaks. This study estimates health and economic impacts associated with PulseNet. The staggered adoption of PulseNet across the states offers a natural experiment to evaluate its effectiveness, which is measured as reduction of reported illnesses due to improved information, enhanced industry accountability, and more-rapid recalls.

View Article and Find Full Text PDF

The synthesis and characterization of air stable Fe(II) coordination complexes with tetrazine and triazolo-tetrazine ligands and perchlorate counteranions have been achieved. Time-dependent density functional theory (TD-DFT) was used to model the structural, electrochemical, and optical properties of these materials. These compounds are secondary explosives that can be initiated with Nd:YAG laser light at lower energy thresholds than those of PETN.

View Article and Find Full Text PDF

High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation.

View Article and Find Full Text PDF