Publications by authors named "Scharfetter H"

Purpose: Recent developments in hardware design enable the use of fast field-cycling (FFC) techniques in MRI to exploit the different relaxation rates at very low field strength, achieving novel contrast. The method opens new avenues for in vivo characterizations of pathologies but at the expense of longer acquisition times. To mitigate this, we propose a model-based reconstruction method that fully exploits the high information redundancy offered by FFC methods.

View Article and Find Full Text PDF

H spin-lattice nuclear magnetic resonance relaxation experiments have been performed for triphenylbismuth dichloride (CHBiCl) and phenylbismuth dichloride (CHBiCl) in powder. The frequency range of 20-128 MHz has been covered. Due to H-Bi dipole-dipole interactions, a rich set of pronounced Quadrupole Relaxation Enhancement (QRE) peaks (quadrupole peaks) has been observed.

View Article and Find Full Text PDF

Magnetic Resonance Imaging (MRI) is one of the most powerful diagnostic tools providing maps of H relaxation times of human bodies. The method needs, however, a contrast mechanism to enlarge the difference in the relaxation times between healthy and pathological tissues. In this work, we discuss the potential of a novel contrast mechanism for MRI based on Quadrupole Relaxation Enhancement (QRE) and estimate the achievable value of QRE under the most favorable conditions.

View Article and Find Full Text PDF

Many smart magnetic resonance imaging (MRI) probes provide response to a biomarker based on modulation of their rotational correlation time. The magnitude of such MRI signal changes is highly dependent on the magnetic field and the response decreases dramatically at high fields (>2 T). To overcome the loss of efficiency of responsive probes at high field, with fast-field cycling magnetic resonance imaging (FFC-MRI) we exploit field-dependent information rather than the absolute difference in the relaxation rate measured in the absence and in the presence of the biomarker at a given imaging field.

View Article and Find Full Text PDF

In biomedical MITS, slight unintentional movements of the patient during measurement can contaminate the aimed images to a great extent. This study deals with measurement optimization in biomedical MITS through the detection of these unpredictable movements during measurement and the elimination of the resulting movement artefacts in the images to be reconstructed after measurement. The proposed detection and elimination (D&E) methodology requires marking the surface of the object under investigation with specific electromagnetically perturbing markers during multi-frame measurements.

View Article and Find Full Text PDF

Nuclear Quadrupole Resonance (NQR) experiments were performed for deuterated and non-deuterated triphenylbismuth (BiPh3) to inquire into 209Bi relaxation mechanisms. The studies are motivated by the idea of exploiting Quadrupole Relaxation Enhancement (QRE) as a novel contrast mechanism for Magnetic Resonance Imaging. From this perspective relaxation features of nuclei possessing quadrupole moment (quadrupole nuclei) are of primary importance for the contrast effect.

View Article and Find Full Text PDF

Motivated by the possibility of exploiting species containing high spin quantum number nuclei (referred to as quadrupole nuclei) as novel contrast agents for Magnetic Resonance Imaging, based on Quadrupole Relaxation Enhancement (QRE) effects, 1H spin-lattice relaxation has been investigated for tris(2-methoxyphenyl)bismuthane and tris(2,6-dimethoxyphenyl)bismuthane in powder. The relaxation experiment has been performed in the magnetic field range of 0.5 T to 3 T (the upper limit corresponds to the field used in many medical scanners).

View Article and Find Full Text PDF

Contrast agents with a strong R dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this R field dependence requires the adaptation of an MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T.

View Article and Find Full Text PDF

In the search for a novel MRI contrast agent which relies on T shortening due to quadrupolar interaction between Bi nuclei and protons, a fast scanning wideband system for zero-field nuclear quadrupole resonance (NQR) spectroscopy is required. Established NQR probeheads with motor-driven tune/match stages are usually bulky and slow, which can be prohibitive if it comes to Bi compounds with low SNR (excessive averaging) and long quadrupolar T times. Moreover many experiments yield better results at low temperatures such as 77 K (liquid nitrogen, LN) thus requiring easy to use cryo-probeheads.

View Article and Find Full Text PDF

Objective: Pharmacokinetic and pharmacodynamic studies of topically applied drugs are commonly performed by sampling of interstitial fluid with dermal open flow microperfusion and subsequent analysis of the samples. However, the reliability of results from the measured concentration-time profile of the penetrating drug suffers from highly variable skin permeability to topically applied drugs that is mainly caused by inter- and intra-subject variations of the stratum corneum. Thus, statistically significant results can only be achieved by performing high numbers of experiments.

View Article and Find Full Text PDF

Nuclear quadrupole resonance spectroscopy is an analytical method which allows to characterize materials which contain quadrupolar nuclei, i.e. nuclei with spin ⩾1.

View Article and Find Full Text PDF

A novel approach is presented for computing optode placements that are adapted to specific geometries and tissue characteristics, e.g., in optical tomography and photodynamic cancer therapy.

View Article and Find Full Text PDF

Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors.

View Article and Find Full Text PDF

Several noninvasive modalities including electrical impedance tomography (EIT), magnetic induction tomography (MIT), and induced-current EIT (ICEIT) have been developed for imaging the electrical conductivity distribution within a human body. Although these modalities differ in how the excitation and detection circuitry (electrodes or coils) are implemented, they share a number of common principles not only within the image reconstruction approaches but also with respect to the basic principle of generating a current density distribution inside a body and recording the resultant electric fields. In this paper, we are interested in comparing differences between these modalities and in theoretically understanding the compromises involved, despite the increased hardware cost and complexity that such a multimodal system brings along.

View Article and Find Full Text PDF

We studied the synchronization of heart rate, blood pressure and respiration in the sympathetic and parasympathetic branches of the autonomic nervous system during a cancellation test of attention and during mental arithmetic tasks. The synchronization was quantified by the index γ, which has been adopted from the analysis of weakly coupled chaotic oscillators. We analyzed in twenty healthy women the continuous signals partitioned in low (LF, 0.

View Article and Find Full Text PDF

Fluorescence tomography is an imaging modality that seeks to reconstruct the distribution of fluorescent dyes inside a highly scattering sample from light measurements on the boundary. Using common inversion methods with L(2) penalties typically leads to smooth reconstructions, which degrades the obtainable resolution. The use of total variation (TV) regularization for the inverse model is investigated.

View Article and Find Full Text PDF

Magnetic induction tomography aims to reconstruct the electrical conductivity distribution of the human body using non-contact measurements. The potential of the method has been demonstrated by various simulation studies and a number of phantom experiments. These studies have all relied on models having isotropic distributions of conductivity, although the human body has a highly heterogeneous structure with partially anisotropic properties.

View Article and Find Full Text PDF

Fluorescence optical tomography is a non-invasive imaging modality that employs the absorption and re-emission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution.

View Article and Find Full Text PDF

Fluorescence tomography excites a fluorophore inside a sample by light sources on the surface. From boundary measurements of the fluorescent light, the distribution of the fluorophore is reconstructed. The optode placement determines the quality of the reconstructions in terms of, e.

View Article and Find Full Text PDF

Magnetic induction tomography (MIT) attempts to obtain the distribution of passive electrical properties inside the body. Eddy currents are induced in the body using an array of transmitter coils and the magnetic fields of these currents are measured by receiver coils. In clinical usage, the relative position of the coils to the body can change during data acquisition because of the expected/unexpected movements of the patient.

View Article and Find Full Text PDF

Magnetic induction tomography (MIT) is an imaging modality that aims at mapping the distribution of the electrical conductivity inside the body. Eddy currents are induced in the body by magnetic induction and the resulting fields are measured by an array of receiver coils. In MIT, the location of the receivers affects the quality of the image reconstruction.

View Article and Find Full Text PDF

Magnetic induction tomography is used to image the electrical properties inside a region of interest. The systems differ in the construction of the receiver channels which can be composed of coils or gradiometers. We will compare and discuss the image quality subject to two different types of receivers, different arrangements for the exciters and receivers and different signal-to-noise ratios.

View Article and Find Full Text PDF