Publications by authors named "Schapansky J"

Rare sequence variants in the microglial cell surface receptor TREM2 have been shown to increase the risk for Alzheimer's disease (AD). Disease-linked TREM2 mutations seem to confer a partial loss of function, and increasing TREM2 cell surface expression and thereby its function(s) might have therapeutic benefit in AD. However, druggable targets that could modulate microglial TREM2 surface expression are not known.

View Article and Find Full Text PDF

Secreted amyloid precursor protein alpha (sAPPα) is a potent neurotrophin in the CNS but a dedicated receptor has not been found. However, protein interactions involving amyloid beta (Aβ), a peptide cleaved from the same parent peptide as sAPPα, indicate that insulin receptors (IRs) could be a target of amyloid peptides. In this study, in vitro analysis of cortical neuronal cultures revealed that exogenous sAPPα increased IR phosphorylation in the absence of insulin.

View Article and Find Full Text PDF

Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation.

View Article and Find Full Text PDF

The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin.

View Article and Find Full Text PDF

Transcription factors are known to play multiple roles in cellular function. Investigators report that factors such as early growth response (Egr) protein and nuclear factor kappa B (NF-κB) are activated in the brain during cancer, brain injury, inflammation, and/or memory. To explore NF-κB activity further, we investigated the transcriptomes of hippocampal slices following electrical stimulation of NF-κB p50 subunit knockout mice (p50-/-) versus their controls (p50+/+).

View Article and Find Full Text PDF

The proteins alpha-synuclein (αSyn) and leucine rich repeat kinase 2 (LRRK2) are both key players in the pathogenesis of the neurodegenerative disorder Parkinson's disease (PD), but establishing a functional link between the two proteins has proven elusive. Research studies for these two proteins have traditionally and justifiably focused in neuronal cells, but recent studies indicate that each protein could play a greater pathological role elsewhere. αSyn is expressed at high levels within neurons, but they also secrete the protein into the extracellular milieu, where it can have broad ranging effects in the nervous system and relevance to disease etiology.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and idiopathic Parkinson's disease. However, the mechanisms for activating its physiological function are not known, hindering identification of the biological role of endogenous LRRK2. The recent discovery that LRRK2 is highly expressed in cells of the innate immune system and genetic association is a risk factor for autoimmune disorders implies an important role for LRRK2 in pathology outside of the central nervous system.

View Article and Find Full Text PDF

Aims/hypothesis: Dorsal root ganglia (DRG) sensory neurons cultured from 3 to 5 month streptozotocin (STZ)-induced diabetic rats exhibit structural and biochemical changes seen in peripheral nerve fibers in vivo, including axonal swellings, oxidative damage, reduced axonal sprouting, and decreased NF-κB activity. NF-κB is a transcription factor required by DRG neurons for survival and plasticity, and regulates transcription of antioxidant proteins (e.g.

View Article and Find Full Text PDF

Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia.

View Article and Find Full Text PDF

Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase).

View Article and Find Full Text PDF

Aims: Studies using transgenic mouse strains that incorporate Alzheimer's disease (AD) mutations are valuable for the identification of signaling pathways, potential drug targets, and possible mechanisms of disease that will aid in our understanding of AD. However, reports on the effects of specific AD mutations (Swedish, KM670/671NL; Indiana, V717F) on behavior (Morris water maze) and neuropathological progression have been inconsistent when comparing different genetic backgrounds in these models. Given this, investigators are compelled to more closely evaluate different background strains.

View Article and Find Full Text PDF

Pathological hallmarks of Alzheimer's disease include memory deficits, accumulation of amyloid beta (Abeta) plaques, the appearance of neurofibrillary tangles, and dysregulation of calcium homeostasis, which has been linked to mutations in the presenilin gene that code for presenilin (PS) proteins. PSs are a family of multi-pass transmembrane proteins where normal presenilins (PS1 and PS2) are highly localized in the endoplasmic reticulum (ER). Several past studies have explored alterations in long-term potentiation (LTP), a proposed molecular correlate of memory, and in behavioral tests of spatial memory in a variety of PS1 models.

View Article and Find Full Text PDF

Modulation of intracellular free calcium levels is the primary second messenger system of the neuronal glutamatergic system, playing a role in regulation of all major cellular processes. The protein neuregulin (NRG) beta1 acts as an extracellular signaling ligand in neurons, rapidly regulating currents through ionotropic glutamate receptors. The effect NRG may have on glutamate-induced changes in intracellular free calcium concentrations has not been examined, however.

View Article and Find Full Text PDF

Mutations in presenilin which result in early-onset Alzheimer disease (AD) cause both increased calcium release from intracellular stores, primarily endoplasmic reticulum (ER), and changes in NF-kappaB activation. Some studies have also reported that neurons containing AD-linked mutant presenilins (mPS1) show increased vulnerability to various stresses, while others report no differences in neuronal death. The majority of these reports center on potential changes in ER stress, because of the enhanced ER calcium release seen in mPS1 neurons.

View Article and Find Full Text PDF

Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB (NF-kappaB) for survival. In contrast, adult DRG neurons survive permanent axotomy in vivo and in defined culture media devoid of exogenous neurotrophic factors in vitro. Peripheral axotomy in adult rats induces local accumulation of the cytokine tumor necrosis factor alpha (TNFalpha), a potent activator of NF-kappaB activity.

View Article and Find Full Text PDF