Transient receptor potential ankyrin 1 (TRPA1) is a voltage-dependent, ligand-gated ion channel, and activation thereof is linked to a variety of painful conditions. Preclinical studies have demonstrated the role of TRPA1 receptors in a broad range of animal models of acute, inflammatory, and neuropathic pain. In addition, a clinical study using the TRPA1 antagonist GRC-17536 (Glenmark Pharmaceuticals) demonstrated efficacy in a subgroup of patients with painful diabetic neuropathy.
View Article and Find Full Text PDFDuring CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth.
View Article and Find Full Text PDFAlthough atomic force microscopy is often the method of choice to probe the mechanical response of (sub)micrometer sized biomaterials, the lowest force that can be reliably controlled is limited to ≈0.1 nN. For soft biological samples, like cells, such forces can already lead to a strain large enough to enter the non-elastic deformation regime.
View Article and Find Full Text PDFRapid nerve conduction in jawed vertebrates is facilitated by the myelination of axons, which evolved in ancient cartilaginous fish. We aim to understand the coevolution of myelin and the major myelin proteins. We found that myelin basic protein (MBP) derived from living cartilaginous fish (sharks and rays) associated with the plasma membrane of glial cells similar to the phosphatidylinositol (4,5)-bisphosphate (PIP₂)-binding marker PH-PLCδ1, and that ionomycin-induced PIP₂-hydrolysis led to its cellular redistribution.
View Article and Find Full Text PDFThe measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself.
View Article and Find Full Text PDFMyelin basic protein (MBP) is an essential structural component of CNS myelin. The electrostatic association of this positively charged protein with myelin-forming membranes is a crucial step in myelination, but the mechanism that regulates myelin membrane targeting is not known. Here, we demonstrate that phosphatidylinositol 4,5-bisphosphate (PIP2) is important for the stable association of MBP with cellular membranes.
View Article and Find Full Text PDFUnderstanding the control of myelin formation by oligodendrocytes is essential for treating demyelinating diseases. Neuregulin-1 (NRG1) type III, an EGF-like growth factor, is essential for myelination in the PNS. It is thus thought that NRG1/ErbB signaling also regulates CNS myelination, a view suggested by in vitro studies and the overexpression of dominant-negative ErbB receptors.
View Article and Find Full Text PDF