Introduction: Autism is diagnosed in numerous genetic and genomic developmental disorders associated with an overlap in high-risk genes and loci that underlie intellectual disability (ID) and epilepsy. The aim of this stereological study of neuronal soma volume in 25 brain structures and their subdivisions in eight individuals 9 to 26 years of age who were diagnosed with chromosome 15q11.2-13.
View Article and Find Full Text PDFRett syndrome (RTT) is a severe neurodevelopmental disorder that is usually caused by mutations in Methyl-CpG-binding Protein 2 (MECP2). Four of the eight common disease causing mutations in MECP2 are nonsense mutations and are responsible for over 35% of all cases of RTT. A strategy to overcome disease-causing nonsense mutations is treatment with nonsense mutation suppressing drugs that allow expression of full-length proteins from mutated genes with premature in-frame stop codons.
View Article and Find Full Text PDFBackground: Autism is a neurodevelopmental disorder of unknown etiopathogenesis associated with structural and functional abnormalities of neurons and increased formation of reactive oxygen species. Our previous study revealed enhanced accumulation of amino-terminally truncated amyloid-β (Aβ) in brain neurons and glia in children and adults with autism. Verification of the hypothesis that intraneuronal Aβ may cause oxidative stress was the aim of this study.
View Article and Find Full Text PDFBackground: It has been shown that amyloid ß (Aβ), a product of proteolytic cleavage of the amyloid β precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type-specific amount.
Methodology/principal Findings: In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD).
The purposes of this study were to identify differences in patterns of developmental abnormalities between the brains of individuals with autism of unknown etiology and those of individuals with duplications of chromosome 15q11.2-q13 (dup[15]) and autism and to identify alterations that may contribute to seizures and sudden death in the latter. Brains of 9 subjects with dup(15), 10 with idiopathic autism, and 7 controls were examined.
View Article and Find Full Text PDFAxonal mRNA transport is robust in cultured neurons but there has been limited evidence for this in vivo. We have used a genetic approach to test for in vivo axonal transport of reporter mRNAs. We show that β-actin's 3'-UTR can drive axonal localization of GFP mRNA in mature DRG neurons, but mice with γ-actin's 3'-UTR show no axonal GFP mRNA.
View Article and Find Full Text PDFSubcellular localization of mRNAs is regulated by RNA-protein interactions. Here, we show that introduction of a reporter mRNA with the 3'UTR of β-actin mRNA competes with endogenous mRNAs for binding to ZBP1 in adult sensory neurons. ZBP1 is needed for axonal localization of β-actin mRNA, and introducing GFP with the 3'UTR of β-actin mRNA depletes axons of endogenous β-actin and GAP-43 mRNAs and attenuates both in vitro and in vivo regrowth of severed axons.
View Article and Find Full Text PDFObjective: Rett syndrome (RTT) is a severe neurodevelopmental disease that affects approximately 1 in 10,000 live female births and is often caused by mutations in Methyl-CpG-binding protein 2 (MECP2). Despite distinct clinical features, the accumulation of clinical and molecular information in recent years has generated considerable confusion regarding the diagnosis of RTT. The purpose of this work was to revise and clarify 2002 consensus criteria for the diagnosis of RTT in anticipation of treatment trials.
View Article and Find Full Text PDFThe most common chromosomal abnormalities associated with autism are 15q11-q13 duplications. Maternally derived or inherited duplications of 15q pose a substantial risk for an autism phenotype, while paternally derived duplications may be incompletely penetrant or result in other neurodevelopmental problems. Therefore, the determination of maternal versus paternal origin of this duplication is important for early intervention therapies and for appropriate genetic counseling to the families.
View Article and Find Full Text PDFAutism spectrum disorders have been associated with maternally derived duplications that involve the imprinted region on the proximal long arm of chromosome 15. Here we describe a boy with a chromosome 15 duplication arising from a 3:1 segregation error of a paternally derived translocation between chromosome 15q13.2 and chromosome 9q34.
View Article and Find Full Text PDFRett syndrome (RTT), a neurological disorder characterized by neurological impairment and a high frequency of osteopenia which often manifests early in childhood, most often is caused by inactivating mutations in the X-linked gene encoding a regulator of epigenetic gene expression, methyl CpG binding protein, MeCP2. Clinical data show that, along with neurological defects, females with RTT frequently have marked decreases in bone mineral density (BMD) beyond that expected from disuse atrophy. To investigate the relationship between loss of Mecp2 and reduced BMD, we used a Mecp2 null mouse model, Mecp2 (-/yBIRD), for our histological and biochemical studies.
View Article and Find Full Text PDFA cluster of low copy repeats on the proximal long arm of chromosome 15 mediates various forms of stereotyped deletions and duplication events that cause a group of neurodevelopmental disorders that are associated with autism or autism spectrum disorders (ASD). The region is subject to genomic imprinting and the behavioral phenotypes associated with the chromosome 15q11.2-q13 disorders show a parent-of-origin specific effect that suggests that an increased copy number of maternally derived alleles contributes to autism susceptibility.
View Article and Find Full Text PDFBackground: Chromosome 15q11-13 contains a cluster of imprinted genes essential for normal mammalian neurodevelopment. Deficiencies in paternal or maternal 15q11-13 alleles result in Prader-Willi or Angelman syndromes, respectively, and maternal duplications lead to a distinct condition that often includes autism. Overexpression of maternally expressed imprinted genes is predicted to cause 15q11-13-associated autism, but a link between gene dosage and expression has not been experimentally determined in brain.
View Article and Find Full Text PDFThe methyl-CpG-binding protein 2 (MECP2) serves both organizational and transcriptional functions in the nucleus, with two well-characterized domains integrally related to these functions. The recognition of methylated CpG dinucleotides is accomplished by the methyl-binding domain (MBD), and the transcriptional repression domain (TRD) facilitates protein-protein interactions with chromatin remodeling proteins. For each known function of MECP2, chromatin binding is a crucial activity.
View Article and Find Full Text PDFBackground: Maternally-derived duplications that include the imprinted region on the proximal long arm of chromosome 15 underlie a complex neurobehavioral disorder characterized by cognitive impairment, seizures and a substantial risk for autism spectrum disorders1. The duplications most often take the form of a supernumerary pseudodicentric derivative chromosome 15 [der(15)] that has been called inverted duplication 15 or isodicentric 15 [idic(15)], although interstitial rearrangements also occur. Similar to the deletions found in most cases of Angelman and Prader Willi syndrome, the duplications appear to be mediated by unequal homologous recombination involving low copy repeats (LCR) that are found clustered in the region.
View Article and Find Full Text PDFAutism is a heterogeneous condition that is likely to result from the combined effects of multiple genetic factors interacting with environmental factors. Given its complexity, the study of autism associated with Mendelian single gene disorders or known chromosomal etiologies provides an important perspective. We used microarray analysis to compare the mRNA expression profile in lymphoblastoid cells from males with autism due to a fragile X mutation (FMR1-FM), or a 15q11-q13 duplication (dup(15q)), and non-autistic controls.
View Article and Find Full Text PDFMutations in the gene encoding methyl CpG binding protein 2 (MeCP2) are the primary cause of the neurodevelopmental disorder Rett syndrome (RTT). Mecp2-deficient mice develop a neurological phenotype that recapitulates many of the symptoms of RTT, including postnatal onset of the neurological deficits. MeCP2 has two isoforms, MeCP2e1 and MeCP2e2, with distinct amino termini, which are generated by alternative splicing.
View Article and Find Full Text PDFNeurotrophins provide trophic and tropic support for different neuronal subpopulations in the developing and adult nervous systems. Expression of the neurotrophins and their receptors can be altered in several different disease or injury states that impact upon the functions in the central and peripheral nervous systems. The intracellular signals used by the neurotrophins are triggered by ligand binding to the cell surface Trk and p75NTR receptors.
View Article and Find Full Text PDFBoth cyclic AMP (cAMP) and nerve growth factor (NGF) have been shown to cause rapid activation of cAMP response element-binding protein (CREB) by phosphorylation of serine 133, but additional regulatory events contribute to CREB-targeted gene expression. Here, we have used stable transfection with a simple cAMP response element (CRE)-driven reporter to address the kinetics of CRE-dependent transcription during neuronal differentiation of PC12 cells. In naive cells, dibutyryl cAMP (dbcAMP) generated a rapid increase in CRE-driven luciferase activity by 5 h that returned to naive levels by 24 h.
View Article and Find Full Text PDFThe autism spectrum disorders (ASD) comprise a complex group of behaviorally related disorders that are primarily genetic in origin. Involvement of epigenetic regulatory mechanisms in the pathogenesis of ASD has been suggested by the occurrence of ASD in patients with disorders arising from epigenetic mutations (fragile X syndrome) or that involve key epigenetic regulatory factors (Rett syndrome). Moreover, the most common recurrent cytogenetic abnormalities in ASD involve maternally derived duplications of the imprinted domain on chromosome 15q11-13.
View Article and Find Full Text PDFAutism is a complex neurodevelopmental disorder having both genetic and epigenetic etiological elements. Isodicentric chromosome 15 (Idic15), characterized by duplications of the multi-disorder critical region of 15q11-q14, is a relatively common cytogenetic event. When the duplication involves maternally derived content, this abnormality is strongly correlated with autism disorder.
View Article and Find Full Text PDFMutations in the X-linked gene encoding the methyl-CpG binding protein MeCP2 are the primary cause of classic and atypical Rett syndrome and have recently been shown to contribute to other neurodevelopmental disorders of varying severity. To determine whether there are molecular correlates to the phenotypic heterogeneity, numerous groups have performed genotype-phenotype correlation studies. These studies have yielded conflicting results, in part because they used different criteria for determining severity and classifying mutations.
View Article and Find Full Text PDF