Publications by authors named "Schalk O"

Photolysis of -nitrophenol, contained in brown carbon, is considered to be a major process for the generation of nitrous acid (HONO) in the atmosphere. In this Letter, we used time-resolved photoelectron spectroscopy with 29.5 eV probe pulses and ab initio calculations to disentangle all reaction steps from the excitation to the dissociation of HONO.

View Article and Find Full Text PDF

The photoionization dynamics of OsO and RuO, chosen as model systems of small-size mononuclear heavy-metal complexes, has been theoretically studied by the time-dependent density functional theory (TDDFT). Accurate experimental measurements of photoionization dynamics as a benchmarking test for the theory are reported for the photoelectron asymmetry parameters of outer valence ionizations of OsO, measured in the 17-90 eV photon energy range. The theoretical results are in good agreement with the available experimental data.

View Article and Find Full Text PDF

The excited state relaxation pathways of isoxazole and oxazole upon excitation with UV-light were investigated by nonadiabatic ab initio dynamics simulations and time-resolved photoelectron spectroscopy. Excitation of the bright ππ*-state of isoxazole predominantly leads to ring-opening dynamics. Both the initially excited ππ*-state and the dissociative πσ*-state offer a combined barrier-free reaction pathway, such that ring-opening, defined as a distance of more than 2 Å between two neighboring atoms, occurs within 45 fs.

View Article and Find Full Text PDF

The influence of ring-puckering on the light-induced ring-opening dynamics of heterocyclic compounds was studied on the sample 5-membered ring molecules γ-valerolactone and 5H-furan-2-one using time-resolved photoelectron spectroscopy and ab initio molecular dynamics simulations. In γ-valerolactone, ring-puckering is not a viable relaxation channel and the only available reaction pathway is ring-opening, which occurs within one vibrational period along the C-O bond. In 5H-furan-2-one, the C=C double bond in the ring allows for ring-puckering which slows down the ring-opening process by about 150 fs while only marginally reducing its quantum yield.

View Article and Find Full Text PDF

The photoinduced dynamics of thiophene and 2,5-dimethylthiophene (2,5-DMT) were investigated upon excitation at 200 and 255 nm (2,5-DMT only) using time-resolved photoelectron spectroscopy and compared with results from ab initio coupled cluster calculations. For thiophene, depopulation of the initially excited B(ππ*) state to the lower-lying A(ππ*) state occurs within 25 ± 20 fs, with a subsequent bifurcation into a ring-puckering channel and a ring-opening channel with lifetimes of 80 ± 20 and 450 ± 50 fs, respectively. For 2,5-DMT, the dynamics following excitation at 200 nm is described by a monoexponential decay with a time constant of 120 ± 20 fs, while that following excitation at 255 nm is best fit by a biexponential decay with time constants of 115 ± 20 fs and 15 ± 3 ps, respectively.

View Article and Find Full Text PDF

One important relaxation pathway for photo-excited five-membered heterocyclic organic molecules is ring-opening via a dissociative πσ state. In this study, we investigate the influence of this pathway in furan and several hydrogenated and methylated derivatives by combining time-resolved photoelectron spectroscopy with time-dependent density functional theory and coupled cluster calculations. We find strong experimental evidence that the ring-opening channel is the major relaxation channel in furan, 2,3-dihydrofuran, and 2-methylfuran (2-MF).

View Article and Find Full Text PDF

The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright B (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved.

View Article and Find Full Text PDF

The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1B (ππ*) state and non-adiabatically coupled dark 2A state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables.

View Article and Find Full Text PDF

In this article, we study the photoinduced dissociation pathways of a metallocarbonyl, Os(CO), in particular the consecutive loss of CO groups. To do so, we performed photoelectron-photoion coincidence (PEPICO) measurements in the single ionization binding energy region from 7 to 35 eV using 45-eV photons. Zero-energy ion appearance energies for the dissociation steps were extracted by modeling the PEPICO data using the statistical adiabatic channel model.

View Article and Find Full Text PDF

Transient absorption anisotropy is a well-established technique in time-resolved liquid phase spectroscopy. Here, we show how the technique is applied in the gas phase for time-resolved photoelectron spectroscopy and what type of additional information can be obtained as compared to other techniques. We exemplify its use by presenting results on rotational revivals in pyrazine after excitation at 324 nm and provide new insights into two recent experiments: (i) the difference between Rydberg and valence state excitation after one- and two-photon absorption in butadiene and (ii) excitation to the two lowest lying vibronic modes of the degenerate π3p Rydberg state in 1-azabicyclo[2.

View Article and Find Full Text PDF

The involvement of intermediate Rydberg states in the relaxation dynamics of small organic molecules which, after excitation to the valence manifold, also return to the valence manifold is rarely observed. We report here that such a transiently populated Rydberg state may offer the possibility to modify the outcome of a photochemical reaction. In a time resolved photoelectron study on pyrrole and its methylated derivatives, N-methyl pyrrole and 2,5-dimethyl pyrrole, 6.

View Article and Find Full Text PDF

For the series furan, furfural and β-furfural we investigated the effect of substituents and their positioning on the photoinduced relaxation dynamics in a combined theoretical and experimental approach. Using time resolved photoelectron spectroscopy with a high intensity probe pulse, we can, for the first time, follow the whole deactivation process of furan through a two photon probe signal. Using the extended 2-electron 2-orbital model [Nenov et al.

View Article and Find Full Text PDF

We have reinvestigated the excited state dynamics of cyclohexa-1,3-diene (CHD) with time-resolved photoelectron spectroscopy and fewest switches surface hopping molecular dynamics based on linear response time-dependent density functional theory after excitation to the lowest lying ππ* (1B) state. The combination of both theory and experiment revealed several new results: First, the dynamics progress on one single excited state surface. After an incubation time of 35 ± 10 fs on the excited state, the dynamics proceed to the ground state in an additional 60 ± 10 fs, either via a conrotatory ring-opening to hexatriene or back to the CHD ground state.

View Article and Find Full Text PDF

The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations.

View Article and Find Full Text PDF

In this paper, we use a combination of photoelectron spectroscopy, mass spectrometry, and density functional theory calculations to get a detailed understanding of valence single and double ionization and the subsequent dissociation processes. This is exemplified on benchmark systems, trimetallo-dodecacarbonyls M3(CO)12 with M = Ru, Os, where the energy remaining in the molecule after photoionization can be retrieved by measuring the degree of fragmentation of the molecular ion. The intensity of different mass peaks can thus be directly related to ionization cross sections obtained by photoelectron spectroscopy.

View Article and Find Full Text PDF

A series of different alkyl vinyl ethers is investigated to decipher the possible reaction channels upon photoexcitation to the π3s-Rydberg and the ππ*-valence state at 200 nm using time-resolved photoelectron spectroscopy and on-the-fly time-dependent density functional theory dynamics simulations. The results indicate two possible relaxation pathways: (1) a radiationless decay through the ππ*-state back to the ground state via torsion of the C═C double bond, in accordance with the dynamics found in ethylene; and (2) a fast dissociation of the C-O bond between the alkyl and the vinoxy group in the πσ*-state. The latter state can be accessed only after excitation to the π3s-Rydberg state (quantum yield of ∼50% according to the dynamics simulations).

View Article and Find Full Text PDF

The photolysis of o-nitrophenol (o-NP), a typical push-pull molecule, is of current interest in atmospheric chemistry as a possible source of nitrous acid (HONO). To characterize the largely unknown photolysis mechanism, the dynamics of the lowest lying excited singlet state (S1) of o-NP was investigated by means of femtosecond transient absorption spectroscopy in solution, time-resolved photoelectron spectroscopy (TRPES) in the gas phase and quantum chemical calculations. Evidence of the unstable aci-nitro isomer is provided both in the liquid and in the gas phase.

View Article and Find Full Text PDF

The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole's electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A2(πσ(∗)) state, in accord with previous experimental and theoretical studies.

View Article and Find Full Text PDF

Progress in our understanding of ultrafast light-induced processes in molecules is best achieved through a close combination of experimental and theoretical approaches. Direct comparison is obtained if theory is able to directly reproduce experimental observables. Here, we present a joint approach comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory.

View Article and Find Full Text PDF

We investigate the competition between intersystem crossing (ISC) and internal conversion (IC) as nonradiative relaxation pathways in cyclic α,β-unsaturated enones following excitation to their lowest lying (1)ππ* state, by means of time-resolved photoelectron spectroscopy and ab initio computation. Upon excitation, the (1)ππ* state of 2-cyclopentenone decays to the lowest lying (1)nπ* state within 120 ± 20 fs. Within 1.

View Article and Find Full Text PDF

Two-photon absorption in systems with parity permits access to states that cannot be prepared by one-photon absorption. Here we present the first time-resolved photoelectron spectroscopy study using this technique, applied to 1,3-butadiene, in which we investigated the dynamics of its dark valence, Rydberg, and superexcited states. The dark valence state dynamics are accessed via the Rydberg manifold, excited by two photons of 400 nm.

View Article and Find Full Text PDF