Musculoskeletal pain has a high prevalence of transition to chronic pain and/or persistence as chronic pain for years or even a lifetime. Possible mechanisms for the development of such pain states are often reflected in inflammatory or neuropathic processes involving, among others, cytokines and other molecules. Since biologics such as blockers of TNF or IL-6 can attenuate inflammation and pain in a subset of patients with rheumatoid arthritis, the question arises to what extent cytokines are involved in the generation of pain in human musculoskeletal diseases.
View Article and Find Full Text PDFInterferon-γ (IFNγ) and interleukin-17 (IL-17) are master regulators of innate and adaptive immunity. Here we asked whether these cytokines also regulate pain. Both cytokines increased the excitability of isolated small- to medium-sized sensory neurons, suggesting a pronociceptive effect.
View Article and Find Full Text PDFObjective: Diabetes mellitus (DM) is an important risk factor for the development of osteoarthritis (OA), increasing OA progression and OA pain. To gain insight into the underlying mechanisms of how DM exacerbates OA processes and OA pain, this study analyzed histological differences of synovial tissues from non-DM and DM patients with OA and correlated these differences with knee pain severity.
Materials And Methods: Synovial tissue was obtained from 12 non-DM and 10 DM patients with advanced knee OA who underwent total knee arthroplasty.
In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor.
View Article and Find Full Text PDFGalanin (Gal) is a neuropeptide with the potential to ameliorate cortical spreading depolarization (CSD), an electrophysiological phenomenon occurring after brain injury or in migraine aura. Gal is expressed in all cortical neurons both in rat and in mouse cortices. Here we investigated whether the effect of Gal on CSD previously described in the rat is conserved in the mouse cortex.
View Article and Find Full Text PDFAlthough Alzheimer's disease (AD) is characterized by distinct pathological changes, their precise impact on cortical functions are not well understood. Here we used TASTPM mice as an AD model and asked whether the development of neurodegenerative changes has an impact on the extracellular space (ECS) and neuronal excitability, in particular cortical spreading depolarization (CSD) which requires intact neuron and glial functions. We studied wildtype (WT) and TASTPM mice (3, 6, and 12 months old).
View Article and Find Full Text PDFObjective: Neutralization of Interleukin (IL)-6-signaling by antibodies is considered a promising tool for the treatment of osteoarthritis (OA). To gain further insight into this potential treatment, this study investigated the effects of IL-6-signaling and IL-6 neutralization on chondrocyte metabolism and the release of IL-6-signaling-related mediators by human chondrocytes.
Design: Chondrocytes were collected from 49 patients with advanced knee/hip OA or femoral neck fracture.
The inhibitory neuropeptide Galanin (Gal) has been shown to mediate anticonvulsion and neuroprotection. Here we investigated whether Gal affects cortical spreading depolarization (CSD). CSD is considered the pathophysiological neuronal mechanism of migraine aura, and a neuronal mechanism aggravating brain damage upon afflictions of the brain.
View Article and Find Full Text PDFDiseases of joints are among the most frequent causes of chronic pain. In the course of joint diseases, the peripheral and the central nociceptive system develop persistent hyperexcitability (peripheral and central sensitization). This review addresses the mechanisms of spinal sensitization evoked by arthritis.
View Article and Find Full Text PDFBackground And Purpose: Prostaglandin E is considered a major mediator of inflammatory pain, by acting on neuronal G protein-coupled EP2 and EP4 receptors. However, the neuronal EP3 receptor, colocalized with EP2 and EP4 receptor, is G protein-coupled and antagonizes the pronociceptive prostaglandin E effect. Here, we investigated the cellular signalling mechanisms by which the EP3 receptor reduces EP2 and EP4 receptor-evoked pronociceptive effects in sensory neurons.
View Article and Find Full Text PDFCGRP release plays a major role in migraine pain by activating the trigeminal pain pathways. Here we explored putative additional effects of CGRP on cortical circuits and investigated whether CGRP affects cortical excitability, cortical spreading depolarization (CSD), a phenomenon associated with migraine aura, blood-brain-barrier (BBB) and microglial morphology. We used immunohistochemistry to localize CGRP and the CGRP receptor (CGRP-R) in native cortex and evaluated morphology of microglia and integrity of the BBB after exposure to CGRP.
View Article and Find Full Text PDFOsteoarthritis (OA) alters chondrocyte metabolism and mitochondrial biology. We explored whether OA and non-OA chondrocytes show persistent differences in metabolism and mitochondrial function and different responsiveness to cytokines and cAMP modulators. Hip chondrocytes from patients with OA or femoral neck fracture (non-OA) were stimulated with IL-1β, TNF, forskolin and opioid peptides.
View Article and Find Full Text PDFWhereas the autonomic nervous system (ANS) and the immune system used to be assigned separate functions, it has now become clear that the ANS and the immune system (and thereby inflammatory cascades) work closely together. During an acute immune response (e. g.
View Article and Find Full Text PDFBoth spinal tumor necrosis factor (TNF) and interleukin-6 (IL-6) contribute to the development of "mechanical" spinal hyperexcitability in inflammatory pain states. Recently, we found that spinal sensitization by TNF was significantly reduced by blockade of spinal IL-6 signaling suggesting that IL-6 signaling is involved in spinal TNF effects. Here, we explored whether spinal interleukin-1β (IL-1β), also implicated in inflammatory pain, induces "mechanical" spinal hyperexcitability, and whether spinal IL-1β effects are related to TNF and IL-6 effects.
View Article and Find Full Text PDFInterleukin (IL)-1β is an important pro-inflammatory cytokine in the progression of osteoarthritis (OA), which impairs mitochondrial function and induces the production of nitric oxide (NO) in chondrocytes. The aim was to investigate if blockade of NO production prevents IL-1β-induced mitochondrial dysfunction in chondrocytes and whether cAMP and AMP-activated protein kinase (AMPK) affects NO production and mitochondrial function. Isolated human OA chondrocytes were stimulated with IL-1β in combination with/without forskolin, L-NIL, AMPK activator or inhibitor.
View Article and Find Full Text PDFHyperalgesic priming is characterized by enhanced nociceptor sensitization by pronociceptive mediators, prototypically PGE . Priming has gained interest as a mechanism underlying the transition to chronic pain. Which stimuli induce priming and what cellular mechanisms are employed remains incompletely understood.
View Article and Find Full Text PDFMutations in the genes encoding for voltage-gated sodium channels cause profound sensory disturbances and other symptoms dependent on the distribution of a particular channel subtype in different organs. Humans with the gain-of-function mutation p.Leu811Pro in SCN11A (encoding for the voltage-gated Nav1.
View Article and Find Full Text PDF