We report the resonantly enhanced radiative emission from a single SiGe quantum dot (QD), which is deterministically embedded into a bichromatic photonic crystal resonator (PhCR) at the position of its largest modal electric field by a scalable method. By optimizing our molecular beam epitaxy (MBE) growth technique, we were able to reduce the amount of Ge within the whole resonator to obtain an absolute minimum of exactly one QD, accurately positioned by lithographic methods relative to the PhCR, and an otherwise flat, a few monolayer thin, Ge wetting layer (WL). With this method, record quality (Q) factors for QD-loaded PhCRs up to Q ∼ 10 are achieved.
View Article and Find Full Text PDFThe Si/SiGe heterosystem would be ideally suited for the realization of complementary metal-oxide-semiconductor (CMOS)-compatible integrated light sources, but the indirect band gap, exacerbated by a type-II band offset, makes it challenging to achieve efficient light emission. We address this problem by strain engineering in ordered arrays of vertically close-stacked SiGe quantum dot (QD) pairs. The strain induced by the respective lower QD creates a preferential nucleation site for the upper one and strains the upper QD as well as the Si cap above it.
View Article and Find Full Text PDFThe strong atomistic spin-orbit coupling of holes makes single-shot spin readout measurements difficult because it reduces the spin lifetimes. By integrating the charge sensor into a high bandwidth radio frequency reflectometry setup, we were able to demonstrate single-shot readout of a germanium quantum dot hole spin and measure the spin lifetime. Hole spin relaxation times of about 90 μs at 500 mT are reported, with a total readout visibility of about 70%.
View Article and Find Full Text PDFHoles confined in quantum dots have gained considerable interest in the past few years due to their potential as spin qubits. Here we demonstrate two-axis control of a spin 3/2 qubit in natural Ge. The qubit is formed in a hut wire double quantum dot device.
View Article and Find Full Text PDFThe revival of interest in GeSn alloys with x ≥ 10% is mainly owed to the recent demonstration of optical gain in this group-IV heterosystem. Yet, Ge and Sn are immiscible over about 98% of the composition range, which renders epilayers based on this material system inherently metastable. Here, we address the temperature stability of pseudomorphic GeSn films grown by molecular beam epitaxy.
View Article and Find Full Text PDFEfficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities.
View Article and Find Full Text PDFArrays of individual molecules can combine the advantages of microarrays and single-molecule studies. They miniaturize assays to reduce sample and reagent consumption and increase throughput, and additionally uncover static and dynamic heterogeneity usually masked in molecular ensembles. However, realizing single-DNA arrays must tackle the challenge of capturing structurally highly dynamic strands onto defined substrate positions.
View Article and Find Full Text PDFRecently, it was shown that lasing from epitaxial Ge quantum dots (QDs) on Si substrates can be obtained if they are partially amorphized by Ge ion bombardment (GIB). Here, we present a model for the microscopic origin of the radiative transitions leading to enhanced photoluminescence (PL) from such GIB-QDs. We provide an energy level scheme for GIB-QDs in a crystalline Si matrix that is based on atomistic modeling with Monte Carlo (MC) analysis and density functional theory (DFT).
View Article and Find Full Text PDFThe biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection.
View Article and Find Full Text PDFSemiconductor light-emitters compatible with standard Si integration technology (SIT) are of particular interest for overcoming limitations in the operating speed of microelectronic devices. Light sources based on group IV elements would be SIT-compatible, but suffer from the poor optoelectronic properties of bulk Si and Ge. Here we demonstrate that epitaxially grown Ge quantum dots (QDs) in a defect-free Si matrix show extraordinary optical properties if partially amorphized by Ge-ion bombardment (GIB).
View Article and Find Full Text PDFWe investigate the optical properties of ordered Ge quantum dots (QDs) by means of micro-photoluminescence spectroscopy (PL). These were grown on pit-patterned Si(001) substrates with a wide range of pit-periods and thus inter QD-distances (425-3400 nm). By exploiting almost arbitrary inter-QD distances achievable in this way we are able to choose the number of QDs that contribute to the PL emission in a range between 70 and less than three QDs.
View Article and Find Full Text PDFBy transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs.
View Article and Find Full Text PDFA high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.
View Article and Find Full Text PDFBackground: Responses to height may range from indifference to minor distress to severe symptoms of fear of heights (acrophobia); visual height intolerance (vHI) denotes the whole spectrum of symptoms. Although there are options to manage vHI, only a small part of persons affected by vHI are willing to seek professional help or confront their problem. Purpose of this study was to determine if persons with vHI, specifically those who show avoidant behavior towards heights (avoiders), score lower in their general self-efficacy (GSE) than those who confront vHI (confronters).
View Article and Find Full Text PDFWe report on the fabrication and characterization of silicon-on-insulator (SOI) photonic crystal slabs (PCS) with commensurately embedded germanium quantum dot (QD) emitters for near-infrared light emission. Substrate pre-patterning defines preferential nucleation sites for the self-assembly of Ge QDs during epitaxial growth. Aligned two-dimensional photonic crystal slabs are then etched into the SOI layer.
View Article and Find Full Text PDFPurpose: Visual height intolerance (vHI) occurs when a trigger causes the apprehension of losing balance and falling. Depending on the severity of vHI, an avoidance behavior may develop in about 50 % of the thus afflicted, and it can have considerable impact on their daily life and interpersonal interactions. It seems obvious that such experiences may be impairing and distressing, but this has not yet been examined systematically.
View Article and Find Full Text PDFAn innovative strategy in dislocation analysis, based on comparison between continuous and tessellated film, demonstrates that vertical dislocations, extending straight up to the surface, easily dominate in thick Ge layers on Si(001) substrates. The complete elimination of dislocations is achieved by growing self-aligned and self-limited Ge microcrystals with fully faceted growth fronts, as demonstrated by AFM extensive etch-pit counts.
View Article and Find Full Text PDFWe identify the most important parameters for the growth of ordered SiGe islands on pit-patterned Si(001) substrates. From a multi-dimensional parameter space we link individual contributions to isolate their influence on ordered island growth. This includes the influences of: the pit size, pit depth and pit period on the Si buffer layer and subsequent Ge growth; the pit sidewall inclination on Ge island growth; the amount of Ge on island morphologies as well as the influences of the pit-size homogeneity, the pit period, the Ge growth temperature and rate on island formation.
View Article and Find Full Text PDFWe demonstrate the formation of Ge quantum dots in ring-like arrangements around predefined {111}-faceted pits in the Si(001) substrate. We report on the complex morphological evolution of the single quantum dots contributing to the rings by means of atomic force microscopy and demonstrate that by careful adjustment of the epitaxial growth parameters, such rings containing densely squeezed islands can be grown with large spatial distances of up to 5 μm without additional nucleation of randomly distributed quantum dots between the rings.
View Article and Find Full Text PDFSiGe heteroepitaxy on vicinal Si (1 1 10) is studied as a model system for one-dimensional (1D) to three-dimensional growth mode transitions. By in situ scanning tunneling microscopy it is shown that the 1D-3D transition proceeds smoothly from perfectly facetted 1D nanoripples to coarsened superripples, tadpoles, asymmetric domes, and barns without involving coalescence or agglomeration. By extension of the studies to a wide range of SiGe compositions, a 1D-3D growth phase diagram is obtained.
View Article and Find Full Text PDFWe present a generic and flexible method to nanopattern biomolecules on surfaces. Carbon-containing nanofeatures are written at variable diameter and spacing by a focused electron beam on a poly(ethylene glycol) (PEG)-coated glass substrate. Proteins physisorb to the nanofeatures with remarkably high contrast factors of more than 1000 compared to the surrounding PEG surfaces.
View Article and Find Full Text PDFThe bottom-up approach of DNA nano-biotechnology can create biomaterials with defined properties relevant for a wide range of applications. This report describes nanoscale DNA tetrahedra that are beneficial to the field of biosensing and the targeted immobilization of biochemical receptors on substrate surfaces. The DNA nanostructures act as immobilization agents that are able to present individual molecules at a defined nanoscale distance to the solvent thereby improving biomolecular recognition of analytes.
View Article and Find Full Text PDFWe show that both the morphology and the optoelectronic properties of SiGe islands growing in the pits of periodically pre-patterned Si(001) substrates are determined by the amount of Ge deposited per unit cell of the pattern. Pit-periods (p) ranging from 300 to 900 nm were investigated, and Ge growth was performed by molecular beam epitaxy (MBE) at temperatures of 690 and 760 °C. The ordered SiGe islands show photoluminescence (PL) emission, which becomes almost completely quenched, once a critical island volume is exceeded.
View Article and Find Full Text PDFThe shape of coherent SiGe islands epitaxially grown on pit-patterned Si(001) substrates displays very uniform collective oscillations with increasing Ge deposition, transforming cyclically between shallower "dome" and steeper "barn" morphologies. Correspondingly, the average Ge content in the alloyed islands also displays an oscillatory behavior, superimposed on a progressive Si enrichment with increasing size. We show that such a growth mode, remarkably different from the flat-substrate case, allows the islands to keep growing in size while avoiding plastic relaxation.
View Article and Find Full Text PDFThis work demonstrates a rib waveguide photodetector based on a vertical Si p-i-n junction with Ge islands operating in the spectral region around lambda=1.55 microm at room temperature. A vertical stack of four layers of Ge islands is grown by molecular beam epitaxy on a silicon-on-insulator.
View Article and Find Full Text PDF