We report the optical trapping of multiple ions localized at individual lattice sites of a one-dimensional optical lattice. We observe a fivefold increased range of axial dc-electric field strength for which ions can be optically trapped with high probability and an increase of the axial eigenfrequency by 2 orders of magnitude compared to an optical dipole trap without interference but of similar intensity. Our findings motivate an alternative pathway to extend arrays of trapped ions in size and dimension, enabling quantum simulations with particles interacting at long range.
View Article and Find Full Text PDFThe control of physical systems and their dynamics on the level of individual quanta underpins both fundamental science and quantum technologies. Trapped atomic and molecular systems, neutral and charged, are at the forefront of quantum science. Their extraordinary level of control is evidenced by numerous applications in quantum information processing and quantum metrology.
View Article and Find Full Text PDFWe study a method for mass-selective removal of ions from a Paul trap by parametric excitation. This can be achieved by applying an oscillating electric quadrupole field at twice the secular frequency using pairs of opposing electrodes. While excitation near the resonance with the secular frequency only leads to a linear increase of the amplitude with excitation duration, parametric excitation near results in an exponential increase of the amplitude.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2020
Many phenomena described in relativistic quantum field theory are inaccessible to direct observations, but analogue processes studied under well-defined laboratory conditions can present an alternative perspective. Recently, we demonstrated an analogy of particle creation using an intrinsically robust motional mode of two trapped atomic ions. Here, we substantially extend our classical control techniques by implementing machine-learning strategies in our platform and, consequently, increase the accessible parameter regime.
View Article and Find Full Text PDFPhys Rev Lett
February 2020
We report the trapping of ultracold neutral Rb atoms and Ba^{+} ions in a common optical potential in absence of any radio frequency (rf) fields. We prepare Ba^{+} at 370 μK and demonstrate efficient sympathetic cooling by 100 μK after one collision. Our approach is currently limited by the Rb density and related three-body losses, but it overcomes the fundamental limitation in rf traps set by rf-driven, micromotion-induced heating.
View Article and Find Full Text PDFWe demonstrate Floquet engineering in a basic yet scalable 2D architecture of individually trapped and controlled ions. Local parametric modulations of detuned trapping potentials steer the strength of long-range interion couplings and the related Peierls phase of the motional state. In our proof of principle, we initialize large coherent states and tune modulation parameters to control trajectories, directions, and interferences of the phonon flow.
View Article and Find Full Text PDFQuantum theory predicts intriguing dynamics during drastic changes of external conditions. We switch the trapping field of two ions sufficiently fast to tear apart quantum fluctuations, i.e.
View Article and Find Full Text PDFTrapped ions are a promising platform for envisioned quantum simulators, with outstanding results in one-dimensional ion crystals. However, theory requires not only interactions at long range, but also higher dimensionality. We operate a basic triangular array of three individually trapped ions based on scalable microfabrication technology.
View Article and Find Full Text PDFWell controlled and highly stable magnetic fields are desired for a wide range of applications in physical research, including quantum metrology, sensing, information processing, and simulation. Here we introduce a low-cost hybrid assembly of rare-earth magnets and magnetic field coils to generate a field strength of [Formula: see text]10.9 mT with a calculated spatial variation of less than 10 within a diameter of spherical volume of 150 μm.
View Article and Find Full Text PDFWe study experimentally and theoretically discrete solitons in crystalline structures consisting of several tens of laser-cooled ions confined in a radio frequency trap. Resonantly exciting localized, spectrally gapped vibrational modes of the soliton, a nonlinear mechanism leads to a nonequilibrium steady state of the continuously cooled crystal. We find that the propagation and the escape of the soliton out of its quasi-one-dimensional channel can be described as a thermal activation mechanism.
View Article and Find Full Text PDFWe use trapped atomic ions forming a hybrid Coulomb crystal and exploit its phonons to study an isolated quantum system composed of a single spin coupled to an engineered bosonic environment. We increase the complexity of the system by adding ions and controlling coherent couplings and, thereby, we observe the emergence of thermalization: Time averages of spin observables approach microcanonical averages while related fluctuations decay. Our platform features precise control of system size, coupling strength, and isolation from the external world to explore the dynamics of equilibration and thermalization.
View Article and Find Full Text PDFA precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted.
View Article and Find Full Text PDFOptical trapping and ions combine unique advantages of independently striving fields of research. Light fields can form versatile potential landscapes, such as optical lattices, for neutral and charged atoms, while avoiding detrimental implications of established radiofrequency traps. Ions interact via long-range Coulomb forces and permit control and detection of their motional and electronic states on the quantum level.
View Article and Find Full Text PDFLaser-cooled and trapped ions can crystallize and feature discrete solitons that are nonlinear, topologically protected configurations of the Coulomb crystal. Such solitons, as their continuum counterparts, can move within the crystal, while their discreteness leads to the existence of a gap-separated, spatially localized motional mode of oscillation above the spectrum. Suggesting that these unique properties of discrete solitons can be used for generating entanglement between different sites of the crystal, we study a detailed proposal in the context of state-of-the-art experimental techniques.
View Article and Find Full Text PDFInguinoscrotal hernias containing urinary bladder are very rare. There are only a few cases described with perforation in the scrotum. This illness is a severe and should be kept in mind with any patient complaining of a scrotal hernia.
View Article and Find Full Text PDFWe describe a high-resolution spectroscopy method in which the detection of single excitation events is enhanced by a complete loss of coherence of a superposition of two ground states. Thereby, transitions of a single isolated atom nearly at rest are recorded efficiently with high signal-to-noise ratios. Spectra display symmetric line shapes without stray-light background from spectroscopy probes.
View Article and Find Full Text PDFWe study experimentally and theoretically structural defects which are formed during the transition from a laser cooled cloud to a Coulomb crystal, consisting of tens of ions in a linear radio frequency trap. We demonstrate the creation of predicted topological defects ("kinks") in purely two-dimensional crystals and also find kinks which show novel dynamical features in a regime of parameters not considered before. The kinks are always observed at the center of the trap, showing a large nonlinear localized excitation, and the probability of their occurrence saturates at ∼0.
View Article and Find Full Text PDFWe introduce a scheme to perform dissipation-assisted quantum information processing in ion traps considering realistic decoherence rates, for example, due to motional heating. By means of continuous sympathetic cooling, we overcome the trap heating by showing that the damped vibrational excitations can still be exploited to mediate coherent interactions as well as collective dissipative effects. We describe how to control their relative strength experimentally, allowing for protocols of coherent or dissipative generation of entanglement.
View Article and Find Full Text PDFQuantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter.
View Article and Find Full Text PDFWe report on three-dimensional optical trapping of single ions in a one-dimensional optical lattice formed by two counterpropagating laser beams. We characterize the trapping parameters of the standing-wave using the ion as a sensor stored in a hybrid trap consisting of a radio-frequency (rf), a dc, and the optical potential. When loading ions directly from the rf into the standing-wave trap, we observe a dominant heating rate.
View Article and Find Full Text PDFRep Prog Phys
February 2012
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well.
View Article and Find Full Text PDFThe vibrations of a collection of ions in a microtrap array can be described in terms of tunneling phonons. We show that the vibrational couplings may be tailored by using a gradient of the trap frequencies together with a periodic driving of the trapping potentials. These ingredients allow us to induce effective gauge fields on the vibrational excitations, such that phonons mimic the behavior of charged particles in a magnetic field.
View Article and Find Full Text PDF