Publications by authors named "Schaeffer V"

Protein-protein interactions (PPIs) govern intracellular life, and identification of PPI inhibitors is challenging. Roadblocks in assay development stemming from weak binding affinities of natural PPIs impede progress in this field. We postulated that enhancing binding affinity of natural PPIs via protein engineering will aid assay development and hit discovery.

View Article and Find Full Text PDF

Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8.

View Article and Find Full Text PDF

The fundamental goal of this article is to describe, define, and analyze the components of the risk characterization process for occupational exposures. Current methods are described for the probabilistic characterization of exposure, including newer techniques that have increasing applications for assessing data from occupational exposure scenarios. In addition, since the probability of health effects reflects variability in the exposure estimate as well as the dose-response curve-the integrated considerations of variability surrounding both components of the risk characterization provide greater information to the occupational hygienist.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1 (encoding TANK-binding kinase 1) in 13 fALS pedigrees.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major complication of diabetes and the leading cause of end-stage renal disease. DN is characterized by changes in kidney structure and function but the underlying genetic and molecular factors are poorly understood. We used a mouse diversity panel to explore the genetic basis of DN traits in mice carrying the Ins2 Akita mutation.

View Article and Find Full Text PDF

Cognitive performance and alertness are two determinants for work efficiency, varying throughout the day and depending on bright light. We conducted a prospective crossover study evaluating the impacts of exposure to an intense, early morning illumination on sustained attention, alertness, mood, and serum melatonin levels in 33 healthy individuals. Compared with a dim illumination, the intense illumination negatively impacted performance requiring sustained attention; however, it positively impacted subjective alertness and mood and had no impact on serum melatonin levels.

View Article and Find Full Text PDF

Linear ubiquitin chains are implicated in the regulation of the NF-κB pathway, immunity, and inflammation. They are synthesized by the LUBAC complex containing the catalytic subunit HOIL-1-interacting protein (HOIP) and are disassembled by the linear ubiquitin-specific deubiquitinase OTULIN. Little is known about the regulation of these opposing activities.

View Article and Find Full Text PDF

Linear ubiquitin chains are important regulators of cellular signalling pathways that control innate immunity and inflammation through nuclear factor (NF)-κB activation and protection against tumour necrosis factor-α-induced apoptosis. They are synthesized by HOIP, which belongs to the RBR (RING-between-RING) family of E3 ligases and is the catalytic component of LUBAC (linear ubiquitin chain assembly complex), a multisubunit E3 ligase. RBR family members act as RING/HECT hybrids, employing RING1 to recognize ubiquitin-loaded E2 while a conserved cysteine in RING2 subsequently forms a thioester intermediate with the transferred or 'donor' ubiquitin.

View Article and Find Full Text PDF

Altered autophagy contributes to the pathogenesis of Alzheimer's disease and other tauopathies, for which curative treatment options are still lacking. We have recently shown that trehalose reduces tau pathology in a tauopathy mouse model by stimulation of autophagy. Here, we studied the effect of the autophagy inducing drug rapamycin on the progression of tau pathology in P301S mutant tau transgenic mice.

View Article and Find Full Text PDF

Aggregation of misfolded proteins and the associated loss of neurons are considered a hallmark of numerous neurodegenerative diseases. Optineurin is present in protein inclusions observed in various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, Parkinson's disease, Creutzfeld-Jacob disease and Pick's disease. Optineurin deletion mutations have also been described in ALS patients.

View Article and Find Full Text PDF

The most common neurodegenerative diseases are characterized by the accumulation of misfolded proteins. Tauopathies, which include Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, Pick disease and cases of frontotemporal dementia and parkinsonism linked to chromosome 17, are characterized by the accumulation of hyperphosphorylated and filamentous MAPT/tau protein. The pathological mechanisms involved in MAPT protein accumulation are not well understood, but a possible impairment of protein degradation pathways has been suggested.

View Article and Find Full Text PDF

The accumulation of insoluble proteins is a pathological hallmark of several neurodegenerative disorders. Tauopathies are caused by the dysfunction and aggregation of tau protein and an impairment of cellular protein degradation pathways may contribute to their pathogenesis. Thus, a deficiency in autophagy can cause neurodegeneration, while activation of autophagy is protective against some proteinopathies.

View Article and Find Full Text PDF

Laminin-β2 (LAMB2) is a critical component of the glomerular basement membrane as content of LAMB2 in part determines glomerular barrier permeability. Previously, we reported that high concentrations of glucose reduce expression of this laminin subunit at the translational level. The present studies were undertaken to further define systems that control Lamb2 translation and the effect of high glucose on those systems.

View Article and Find Full Text PDF

Excessive proinflammatory activation after trauma plays a role in late morbidity and mortality, including the development of multiple organ dysfunction syndrome (MODS). To date, identification of patients at risk has been challenging. Results from animal and human studies suggest that circulating interleukin 6 (IL-6) may serve as a biomarker for excessive inflammation.

View Article and Find Full Text PDF

Background: As heightened protein synthesis is the hallmark of many inflammatory syndromes, we hypothesize that the mammalian target of rapamycin (mTOR) pathway, which control the cap-dependent translation initiation phase, was activated by lipopolysaccharide (LPS). In addition, we studied the effect of hypertonic saline solution (HTS) on the mTOR cascade in peripheral blood mononuclear cells (PBMCs).

Materials And Methods: PBMCs were isolated from healthy volunteers and treated with LPS.

View Article and Find Full Text PDF

The enzyme 3alpha-hydroxysteroid oxido-reductase (3alpha-HSOR) catalyzes the synthesis and bioavailability of 3alpha,5alpha-neurosteroids as allopregnanolone (3alpha,5alpha-THP) which activates GABA(A) receptors and blocks T-type calcium channels involved in pain mechanisms. Here, we used a multidisciplinary approach to demonstrate that 3alpha-HSOR is a cellular target the modulation of which in dorsal root ganglia (DRG) may contribute to suppress pain resulting from peripheral nerve injury. Immunohistochemistry and confocal microscope analyses showed 3alpha-HSOR-immunostaining in naive rat DRG sensory neurons and glial cells.

View Article and Find Full Text PDF

Dorsal root ganglia (DRG) which contain glial cells and somas of primary sensory neurons are pivotal for neural transmission between the peripheral and central nervous systems. It is well established that neuropeptides such as substance P and calcitonin gene-related peptide located in DRG neurons control sensory and pain mechanisms. However, contrary to the brain and spinal cord which are extensively investigated, DRG received little attention.

View Article and Find Full Text PDF

Translational control of protein synthesis is critical for cell division, homeostasis and survival. Recent data indicate that dysregulation of protein synthesis that leads to either increased or decreased expression of specific proteins contributes to the manifestations of various kidney diseases. Most of the control of protein synthesis occurs in the first or initiation phase, which is also the most complicated.

View Article and Find Full Text PDF

Insulin-like growth factor binding protein-5 (IGFBP-5) mediates mesangial cell migration through activation of cdc42, and laminin421 binding to alpha(6)beta(1)-integrin (Berfield AK, Hansen KM, Abrass CK. Am J Physiol Cell Physiol 291: C589-C599, 2006). Because glomerular expression of laminin beta(2) is reduced in diabetic rats (Abrass CK, Spicer D, Berfield AK, St.

View Article and Find Full Text PDF

Neurotransmitters such as glutamate, substance P, serotonin and gamma-aminobutyric acid pivotally control pain mechanisms. It is also well known that inflammatory and/or neuropathic pain may depend on the action of diverse cytokines and other molecules including eicosanoids, endorphins, calcitonin-gene related peptide, free radicals and transcription factors. Because steroids control the development, activities and plasticity of the nervous system, these compounds are of particular interest in the modulation of pain.

View Article and Find Full Text PDF

Neurosteroids are synthesized either by glial cells, by neurons, or within the context of neuron-glia cross-talk. Various studies suggested neurosteroid involvement in the control of neurodegeneration but there is no evidence showing that the natural protection of nerve cells against apoptosis directly depends on their own capacity to produce neuroprotective neurosteroids. Here, we investigated the interactions between neurosteroidogenesis and apoptosis occurring in sensory structures of rats subjected to neuropathic pain generated by sciatic nerve chronic constriction injury (CCI).

View Article and Find Full Text PDF

Objective: Describe and define the factors associated with missed opportunities of an in utero transfer (IUT), defined by by an absence of IUT where there was no counter-indication for a transfer.

Materials And Methods: Multicentric and retrospective cohort study within the Aquitaine perinatal healthcare network from 1st January 2003 to 30th June 2005 on deliveries between 24 and 32 weeks gestation, depending on whether the woman initially followed care in level I or II facilities benefited from an IUT at a level III facility or not. associated with missed opportunities of IUT were analysed by a logistic regression.

View Article and Find Full Text PDF

It has recently been demonstrated that the spinal cord (SC) is an active production center of neuroactive steroids including pregnenolone, dehydroepiandrosterone, progesterone and allopregnanolone. Indeed, anatomical, cellular and biochemical investigations have shown that the SC dorsal horn (DH), a pivotal structure in nociception, contains various active steroidogenic enzymes such as cytochrome P450side-chain-cleavage, cytochrome P450c17, 3beta-hydroxysteroid dehydrogenase, 5alpha-reductase and 3alpha-hydroxysteroid oxido-reductase. Reviewed here are several data obtained with in vitro and vivo experiments showing that endogenous steroids synthesized in the SC are involved in the modulation of nociceptive mechanisms.

View Article and Find Full Text PDF

Interactions between neurosteroidogenesis and proteins involved in age-related diseases are unknown. High concentrations of amyloid-beta (A beta) peptides induce plaques in Alzheimer's disease but several studies demonstrated that physiological or non-toxic doses are neuroprotective. We compared the effects of non-toxic and toxic concentrations of A beta 1-42 and A beta 25-35 on neurosteroidogenesis in human neuroblastoma SH-SY5Y cells.

View Article and Find Full Text PDF