NADPH oxidase organizer 1 (NoxO1) is a scaffold cytoplasmic subunit of the reactive oxygen species (ROS) forming Nox1 complex and involved in angiogenesis, differentiation, and atherosclerosis. We found that overexpression of NoxO1 without simultaneous overexpression of any other component of the active Nox1 complex inhibited EGF-induced wound closure and signaling, while NoxO1 KO yielded the opposite effect. Accordingly, we hypothesize NoxO1 to exert Nox1 independent functions.
View Article and Find Full Text PDFRationale: Nox4 is a constitutively active NADPH oxidase that constantly produces low levels of HO. Thereby, Nox4 contributes to cell homeostasis and long-term processes, such as differentiation. The high expression of Nox4 seen in endothelial cells contrasts with the low abundance of Nox4 in stem cells, which are accordingly characterized by low levels of HO.
View Article and Find Full Text PDFNADPH oxidases produce reactive oxygen species that differ in localization, type and concentration. Within the Nox family only Nox4 produces HO which can directly oxidize cysteine residues. With this post-translational modification, activity, stability, localization and protein-protein interactions of the affected protein is altered.
View Article and Find Full Text PDFAccording to the free radical theory of aging, reactive oxygen species (ROS) have been proposed to be a major cause of aging for a long time. Meanwhile, it became clear that ROS have diverse functions in a healthy organism. They act as second messengers, and as transient inhibitors of phosphatases and others.
View Article and Find Full Text PDFCysteinyl leukotriene receptor 1 antagonists (CysLT1RA) are frequently used as add-on medication for the treatment of asthma. Recently, these compounds have shown protective effects in cardiovascular diseases. This prompted us to investigate their influence on soluble epoxide hydrolase (sEH) and peroxisome proliferator activated receptor (PPAR) activities, two targets known to play an important role in CVD and the metabolic syndrome.
View Article and Find Full Text PDFT lymphocyte non-Hodgkin's lymphoma (T-NHL) represents an aggressive and largely therapy-resistant subtype of lymphoid malignancies. As deregulated apoptosis is a frequent hallmark of lymphomagenesis, we analyzed gene expression profiles and protein levels of primary human T-NHL samples for various apoptotic regulators. We identified the apoptotic regulator MCL-1 as the only pro-survival BCL-2 family member to be highly expressed throughout all human T-NHL subtypes.
View Article and Find Full Text PDFMetabolic syndrome (MetS) is a multifactorial disease cluster that consists of dyslipidemia, cardiovascular disease, type 2 diabetes mellitus, and obesity. MetS patients are strongly exposed to polypharmacy; however, the number of pharmacological compounds required for MetS treatment can be reduced by the application of multitarget compounds. This study describes the design of dual-target ligands that target soluble epoxide hydrolase (sEH) and the peroxisome proliferator-activated receptor type γ (PPARγ).
View Article and Find Full Text PDF