Introduction: Somatic inactivation of the TP53 gene in breast tumors is a marker for poor outcome, and breast cancer outcome might also be affected by germ-line variation in the TP53 gene or its regulators. We investigated the effects of the germ-line single nucleotide polymorphisms TP53 R72P (215G>C) and MDM2 SNP309 (-410T>G), and p53 protein expression in breast tumors on survival.
Methods: We pooled data from four breast cancer cohorts within the Breast Cancer Association Consortium for which both TP53 R72P and MDM2 SNP309 were genotyped and follow-up was available (n = 3,749).
Background: MDM4 is a negative regulator of p53 and cooperates with MDM2 in the cellular response to DNA damage. It is unknown, however, whether MDM4 gene alterations play some role in the inherited component of breast cancer susceptibility.
Methods: We sequenced the whole MDM4 coding region and flanking untranslated regions in genomic DNA samples obtained from 40 German patients with familial breast cancer.
Association studies in large series of breast cancer patients can be used to identify single-nucleotide polymorphisms (SNP) contributing to breast cancer susceptibility. Previous studies have suggested associations between variants in TP53 (R72P) and MDM2 (SNP309) and cancer risk. Data from molecular studies suggest a functional interaction between these genes.
View Article and Find Full Text PDF