Publications by authors named "Scarim A"

Tablets are the most widely available dosage form for the treatment of TB; however, adult tablets fail to meet the needs of young children who cannot swallow these tablets or require dose titration. We tested a new, simple device (XTEMP-R) and the methodology for converting tablets of TB drugs into a homogeneous suspension for home use by children and caregivers. XTEMP-R is a new device used for converting tablets into liquid preparations.

View Article and Find Full Text PDF

Tablet formulations fail to meet the needs of patients unable to swallow tablets such as pediatric, elderly, and patients that must receive medications via feeding tubes. Our objective was to develop and test a new, simple device (XTEMP-R) and the methodology for converting tablets into a homogeneous suspension for medication administration. We developed a new device comprised of a flexible receptacle, a tight-fitting cap, and a suction cup bottom to convert tablets into liquid preparations.

View Article and Find Full Text PDF

Bedaquiline (BDQ) tablets are indicated as part of a combination regimen for the treatment of multidrug-resistant TB in adults, adolescents and children. A dispersible tablet formulation is now approved but is not currently available in all settings. The aim of this study was to develop stable extemporaneous liquid formulations of BDQ that can be stored at room temperature or 30°C for several weeks, to support pragmatic pediatric dosing in the field and reduce wastage.

View Article and Find Full Text PDF

Delamanid (DLM) tablets are recommended for the treatment of rifampicin-resistant TB. However, no liquid or dispersible tablet formulation of DLM is currently commercially available for patients with challenges ingesting these tablets. The aim of this study was to develop stable extemporaneous liquid formulations of DLM that can be stored at room temperature for several weeks.

View Article and Find Full Text PDF

BACKGROUND: Clofazimine (CFZ) is routinely used worldwide for the treatment of leprosy and TB. However, no liquid or dispersible tablet formulations of CFZ are currently available commercially for patients with challenges ingesting soft gelatin capsules or solid formulations. The aim of this research was to develop stable extemporaneous liquid formulations of CFZ that can be stored at room temperature for several weeks to enable practical dosing in the field.

View Article and Find Full Text PDF

Pretomanid (PMD) tablets are indicated as part of a combination regimen for the treatment of adults with pulmonary extensively drug-resistant, treatment-intolerant or non-responsive multidrug-resistant TB. No commercial liquid formulation is currently available for patients unable to swallow these tablets. To develop stable extemporaneous liquid formulations of PMD that can be stored at room temperature or 30°C for at least 4 weeks.

View Article and Find Full Text PDF

Background: There are at least two phases of beta-cell death during the development of autoimmune diabetes: an initiation event that results in the release of beta-cell-specific antigens, and a second, antigen-driven event in which beta-cell death is mediated by the actions of T lymphocytes. In this report, the mechanisms by which the macrophage-derived cytokine interleukin (IL)-1 induces beta-cell death are examined. IL-1, known to inhibit glucose-induced insulin secretion by stimulating inducible nitric oxide synthase expression and increased production of nitric oxide by beta-cells, also induces beta-cell death.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor (PPAR)gamma ligands are known to have anti-inflammatory properties that include the inhibition of cytokine signaling, transcription factor activation, and inflammatory gene expression. We have recently observed that increased expression of heat shock protein (HSP)70 correlates with, but is not required for, the anti-inflammatory actions of PPARgamma ligands on cytokine signaling. In this study, we provide evidence that the inhibitory actions of PPARgamma ligands on cytokine signaling are associated with endoplasmic reticulum (ER) stress or unfolded protein response (UPR) activation in pancreatic beta-cells.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor (PPAR)gamma agonists, such as 15-deoxy-delta 12,14-prostaglandin J2 (PGJ2) and troglitazone, have been shown to elicit anti-inflammatory effects in pancreatic beta-cells that include inhibition of cytokine-stimulated inducible nitric oxide synthase (iNOS) gene expression and production of nitric oxide. In addition, these ligands impair IL-1-induced NF-kappaB and MAPK as well as IFN-gamma-stimulated signal transducer and activator of transcription (STAT)1 activation in beta-cells. The purpose of this study was to determine if PPARgamma activation participates in the anti-inflammatory actions of PGJ2 in beta-cells.

View Article and Find Full Text PDF

Treatment of rat islets with the cytokine IL-1 results in the inhibition of mitochondrial function and insulin secretion, events that are mediated by beta-cell expression of iNOS [inducible nitric oxide (NO) synthase] and production of NO. beta-Cells recover from the inhibitory actions of NO, produced following 24 h incubation with IL-1, on islet oxidative metabolism and insulin secretion if iNOS enzymatic activity is inhibited and the islets are cultured (in the presence of IL-1 and iNOS inhibitors) for a brief period of 8 h. Islet recovery from cytokine- and NO-mediated damage is an active process that requires new gene expression, and NO itself is one activator of this recovery process.

View Article and Find Full Text PDF

The inhibitory actions of 15-deoxy-Delta(12,14)-prostaglandin J(2) (PGJ(2)) on inflammatory gene expression have been attributed to the ability of this prostaglandin to inhibit the activation of NF-kappaB. In this study, we have identified an additional signaling pathway sensitive to inhibition by PGJ(2). We show that PGJ(2) inhibits interferon (IFN)-gamma-stimulated phosphorylation and DNA-binding activity of STAT1.

View Article and Find Full Text PDF

The double-stranded (ds) RNA-dependent protein kinase (PKR) is a primary regulator of antiviral responses; however, the ability of dsRNA to activate nuclear factor-kappa B (NF-kappa B) and dsRNA + interferon gamma (IFN-gamma) to stimulate inducible nitric-oxide synthase (iNOS) expression by macrophages isolated from PKR(-/-) mice suggests that signaling pathways in addition to PKR participate in antiviral activities. We have identified a novel phospholipid-signaling cascade that mediates macrophage activation by dsRNA and viral infection. Bromoenol lactone (BEL), a selective inhibitor of the calcium-independent phospholipase A(2) (iPLA(2)), prevents dsRNA- and virus-induced iNOS expression by RAW 264.

View Article and Find Full Text PDF

Environmental factors, such as viral infection, have been implicated as potential triggering events leading to the initial destruction of pancreatic beta cells during the development of autoimmune diabetes. Double-stranded RNA (dsRNA), the active component of a viral infection that stimulates antiviral responses in infected cells, has been shown in combination with interferon-gamma (IFN-gamma) to stimulate inducible nitric oxide synthase (iNOS) expression and nitric oxide production and to inhibit beta cell function. Interferon regulatory factor-1 (IRF-1), the activation of which is induced by dsRNA, viral infection, and IFN-gamma, regulates the expression of many antiviral proteins, including PKR, type I IFN, and iNOS.

View Article and Find Full Text PDF

Viral infection is one environmental factor that has been implicated as a precipitating event that may initiate beta-cell damage during the development of diabetes. This study examines the mechanisms by which the viral replicative intermediate, double-stranded (ds) RNA impairs beta-cell function and induces beta-cell death. The synthetic dsRNA molecule polyinosinic-polycytidylic acid (poly IC) stimulates beta-cell DNA damage and apoptosis without impairing islet secretory function.

View Article and Find Full Text PDF

Environmental factors, such as viral infection, have been implicated in the destruction of beta-cells during the development of autoimmune diabetes. Double-stranded RNA (dsRNA), produced during viral replication, is an active component of a viral infection that stimulates antiviral responses in infected cells. Previous studies have shown that treatment of rat islets with dsRNA in combination with gamma-interferon (IFN-gamma) results in a nitric oxide-dependent inhibition of glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

Viral infection is one environmental factor that may initiate beta-cell damage during the development of autoimmune diabetes. Formed during viral replication, double-stranded RNA (dsRNA) activates the antiviral response in infected cells. In combination, synthetic dsRNA (polyinosinic-polycytidylic acid, poly(I-C)) and interferon (IFN)-gamma stimulate inducible nitric-oxide synthase (iNOS) expression, inhibit insulin secretion, and induce islet degeneration.

View Article and Find Full Text PDF

In this study, the anti-inflammatory actions of the peroxisome proliferator-activated receptor (PPAR)-gamma agonists 15-deoxy-delta 12,14-prostaglandin J2 (15-d-delta 12,14-PGJ2) and troglitazone have been examined. Treatment of RAW 264.7 cells and CD-1 mouse peritoneal macrophages with lipopolysaccharide (LPS) + interferon-gamma (IFN-gamma) results in inducible nitric oxide synthase (iNOS), inducible cyclooxygenase (COX-2) and interleukin-1 (IL-1) expression, increased production of nitric oxide, and the release of IL-1.

View Article and Find Full Text PDF

In this study, the ability of interferon-gamma (IFN-gamma) to prime rat and nonobese diabetic (NOD) mouse islets for interleukin-1 (IL-1)-stimulated expression of inducible nitric-oxide synthase (iNOS) has been examined. IL-1-induced iNOS expression by rat islets is concentration-dependent with maximal expression occurring in response to 1.0 unit/ml.

View Article and Find Full Text PDF

Viral infection has been implicated as a triggering event that may initiate beta-cell damage during the development of autoimmune diabetes. In this study, the effects of the viral replicative intermediate, double-stranded RNA (dsRNA) (in the form of synthetic polyinosinic-polycytidylic acid (poly IC)) on islet expression of inducible nitric oxide synthase (iNOS), production of nitric oxide, and islet function and viability were investigated. Treatment of rat islets with poly(IC) + interferon-gamma (IFN-gamma) stimulates the time- and concentration-dependent expression of iNOS and production of nitrite by rat islets.

View Article and Find Full Text PDF

In this study the effects of heat shock on interleukin-1beta (IL-1)-induced inhibition of islet metabolic function were examined. Treatment of rat islets for 18 h with IL-1 results in a potent inhibition of glucose-stimulated insulin secretion. The inhibitory effects of IL-1 on insulin secretion are completely prevented if islets are pretreated for 60 min at 42 C before cytokine stimulation.

View Article and Find Full Text PDF

Carbonic anhydrase V (CA-V) is a mitochondrial enzyme that provides bicarbonate for pyruvate carboxylase in liver and kidney. In the course of a survey of the tissue distribution of CA-V, we detected intense immunostaining in pancreatic islets when sections from rat and mouse pancreases were reacted with a polyclonal antibody to recombinant mouse CA-V. The distribution and large number of CA-V-positive cells in each islet suggested that they represented beta cells.

View Article and Find Full Text PDF

Resident macrophages have been suggested to participate in the initiation of beta cell damage during the development of autoimmune diabetes. The purpose of this study was to determine if the endogenous production and release of interleukin 1 (IL-1) in human islets of Langerhans by resident macrophages results in the inhibition of beta cell function. Treatment of human islets with a combination of tumor necrosis factor (TNF) + lipopolysaccharide (LPS) + interferon-gamma (IFN-gamma) stimulates inducible nitric oxide synthase (iNOS) expression, nitric oxide production, and inhibits glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

The effects of double-stranded RNA (synthetic polyinosinic-polycytidylic acid; poly(I-C)) on macrophage expression of inducible nitric-oxide synthase (iNOS), production of nitric oxide, and release of interleukin-1 (IL-1) were investigated. Individually, poly(I-C), interferon-gamma (IFN-gamma), and lipopolysaccharide (LPS) stimulate nitrite production and iNOS expression by RAW 264.7 cells.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the effects of resident islet macrophage activation on beta cell function. Treatment of freshly isolated rat islets with TNF-alpha and LPS results in a potent inhibition of glucose-stimulated insulin secretion. The inhibitory actions of TNF + LPS are mediated by the intraislet production and release of IL-1 followed by IL-1-induced inducible nitric oxide synthase (iNOS) expression by beta cells.

View Article and Find Full Text PDF