Publications by authors named "Scaraffia P"

Background: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases.

View Article and Find Full Text PDF

We previously demonstrated that Aedes aegypti pyruvate kinase (AaPK) plays a key role in the regulation of both carbon and nitrogen metabolism in mosquitoes. To further elucidate whether AaPK can be post-translationally regulated by Ae. aegypti sirtuin 2 (AaSirt2), an NAD-dependent deacetylase that catalyzes the removal of acetyl groups from acetylated lysine residues, we conducted a series of analysis in non-starved and starved female mosquitoes.

View Article and Find Full Text PDF

Nearly half a million people die annually due to mosquito-borne diseases. Despite aggressive mosquito population-control efforts, current strategies are limited in their ability to control these vectors. A better understanding of mosquito metabolism through modern approaches can contribute to the discovery of novel metabolic targets and/or regulators and lead to the development of better mosquito-control strategies.

View Article and Find Full Text PDF

A recent in vitro characterization of a recombinant pyruvate kinase (PK) from Aedes aegypti mosquitoes demonstrated that the enzyme is uniquely regulated by multiple allosteric effectors. Here, we further explored PK gene and protein expression, and enzymatic activity in key metabolic tissues of mosquitoes maintained under different nutritional conditions. We also studied the metabolic effects of PK depletion using several techniques including RNA interference and mass spectrometry-based stable-isotope tracing.

View Article and Find Full Text PDF

Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diseases of public health significance. The discovery of new metabolic targets is crucial for improving mosquito control strategies. We recently demonstrated that glucose oxidation supports ammonia detoxification in A.

View Article and Find Full Text PDF

In females, the ammonia released during blood meal digestion is partially metabolized to facilitate the disposal of excess nitrogen. In this study, we used low- and high-resolution liquid chromatography-mass spectrometry (LC/MS) techniques to investigate the role of glucose during ammonia detoxification. Mosquitoes were fed a blood meal supplemented with [1,2-C]glucose, and downstream metabolites were measured for 24 h.

View Article and Find Full Text PDF

has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed and gene expression by real-time quantitative PCR in tissues from sugar- and blood-fed females. Differential and gene expression was observed in tissues dissected throughout a time course.

View Article and Find Full Text PDF

To better understand the mechanisms responsible for the success of female mosquitoes in their disposal of excess nitrogen, we investigated the role of alanine aminotransferase (ALAT) in blood-fed Aedes aegypti. Transcript and protein levels from the 2 ALAT genes were analyzed in sucrose- and blood-fed A. aegypti tissues.

View Article and Find Full Text PDF

Akt signaling regulates diverse physiologies in a wide range of organisms. We examine the impact of increased Akt signaling in the fat body of 2 mosquito species, the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Overexpression of a myristoylated and active form of A.

View Article and Find Full Text PDF

Background: It was previously demonstrated that alanine aminotransferase (ALAT, EC 2.6.1.

View Article and Find Full Text PDF

Aedes aegypti mosquitoes do not have a typical functional urea cycle for ammonia disposal such as the one present in most terrestrial vertebrates. However, they can synthesize urea by two different pathways, argininolysis and uricolysis. We investigated how formation of urea by these two pathways is regulated in females of A.

View Article and Find Full Text PDF

Glu, Gln, Pro, and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS(2)) to monitor each carbon of the above isotopically-labeled (13)C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS(2) tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways.

View Article and Find Full Text PDF

It has been demonstrated that argininolysis and uricolysis are involved in the synthesis and excretion of urea in Aedes aegypti female mosquitoes. To further investigate the metabolic regulation of urea in female mosquitoes, it is desirable to have a rapid and efficient method to monitor arginine (Arg) concentration in mosquito excreta. Thus, a procedure currently used for the identification of Arg in urea cycle disorders in newborn babies was adapted to analyze Arg in A.

View Article and Find Full Text PDF

The fragmentation patterns of various (13)C-labeled glucose molecules were analyzed by electrospray ionization tandem mass spectrometry. Derivatization of glucose to yield methylglucosamine makes the C-C bond between C1 and C2 a favored cleavage site. This is in contrast to underivatized glucose, which favorably undergoes loss of a fragment containing both C1 and C2.

View Article and Find Full Text PDF

In order to understand at the tissue level how Aedes aegypti copes with toxic ammonia concentrations that result from the rapid metabolism of blood meal proteins, we investigated the incorporation of (15)N from (15)NH(4)Cl into amino acids using an in vitro tissue culture system. Fat body or midgut tissues from female mosquitoes were incubated in an Aedes saline solution supplemented with glucose and (15)NH(4)Cl for 10-40min. The media were then mixed with deuterium-labeled amino acids, dried and derivatized.

View Article and Find Full Text PDF

We demonstrate the presence of an alternate metabolic pathway for urea synthesis in Aedes aegypti mosquitoes that converts uric acid to urea via an amphibian-like uricolytic pathway. For these studies, female mosquitoes were fed a sucrose solution containing (15)NH4Cl, [5-(15)N]-glutamine, [(15)N]-proline, allantoin, or allantoic acid. At 24 h after feeding, the feces were collected and analyzed in a mass spectrometer.

View Article and Find Full Text PDF

We have established a protocol to study the kinetics of incorporation of 15N into glutamine (Gln), glutamic acid (Glu), alanine (Ala) and proline (Pro) in Aedes aegypti females. Mosquitoes were fed 3% sucrose solutions containing either 80 mM 15NH4Cl or 80 mM glutamine labeled with 15N in either the amide nitrogen or in both amide and amine nitrogens. In some experiments, specific inhibitors of glutamine synthetase or glutamate synthase were added to the feeding solutions.

View Article and Find Full Text PDF

A fragmentation mechanism for the neutral loss of 73 Da from dimethylformamidine glutamine isobutyl ester is investigated. Understanding this mechanism will allow to improve the identification and quantification of 15N-labeled and unlabeled glutamine and the distinguishing of glutamine and glutamic acid by electrospray ionization (ESI)-tandem mass spectrometry. Before mass spectrometry analysis, glutamine and glutamic acid are derivatized with dimethylformamide dimethyl acetal and isobutanol to form dimethylformamidine isobutyl ester.

View Article and Find Full Text PDF

We investigated the mechanisms by which Aedes aegypti mosquitoes are able to metabolize ammonia. When females were given access to solutions containing NH(4)Cl or to a blood meal, hemolymph glutamine and proline concentrations increased markedly, indicating that ammonium/ammonia can be removed from the body through the synthesis of these two amino acids. The importance of glutamine synthetase was shown when an inhibitor of the enzyme was added to the meal causing the glutamine concentration in hemolymph to decrease significantly, while the proline concentration increased dramatically.

View Article and Find Full Text PDF

In order to determine whether proline can be utilized as fuel during flight of Aedes aegypti, proline, alanine, and glutamine concentrations were monitored at 0, 30 and 60 min after flight using sugar-fed males and females, and blood meal-fed females. In sugar-fed and blood meal-fed females, flight lead to a significant decrease in proline and a significant increase in glutamine concentration in both hemolymph and thorax. Only during flight after a blood meal was a significant increase in the alanine concentration observed in hemolymph.

View Article and Find Full Text PDF

Activities of hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PDH), fructose-6-phosphate kinase (F6PK), glutamate dehydrogenase (GlutDH), aspartate aminotransferase (AAT), malate dehydrogenase (MDH) and glycerol-3-phosphate dehydrogenase (GPDH) were determined in tissue extracts of testes and ovaries of adult Dipetalogaster maximus (Uhler) and Triatoma infestans (Klug) (Hemiptera: Reduviidae), insect vectors of Chagas disease. The fine structure organization of the same organs were studied by electron microscopy. Results allow the following inferences: in testes from both species, most of the glucose would be utilized through the glycolytic pathway.

View Article and Find Full Text PDF

A fatty acid-binding protein (FABP) from the cytosolic fraction of the triatomine Dipetalogaster maximus (Uhler) flight muscles was purified by a procedure based on gel filtration, reverse-phase high performance liquid chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The protein has an apparent molecular mass of 14 kDa, and its N-terminus is unblocked. Its N-terminal sequence was obtained by submitting an SDS-PAGE band blotted onto a polyvinylidene difluoride membrane to Edman degradation.

View Article and Find Full Text PDF