Publications by authors named "Scalora M"

One-dimensional sub-wavelength gratings are versatile photonic platforms supporting diverse resonances, including symmetry-protected bound states in the continuum. However, practical access to these bound modes relies on their quasi-bound form, which necessitates the introduction of perturbations in either geometry or material properties. Despite having a large, finite quality factor, quasi-bound modes retain their characteristically strong field confinement.

View Article and Find Full Text PDF

Space-time modulation of electromagnetic parameters offers novel exciting possibilities for advanced field manipulations. In this study, we explore wave scattering from a time-varying interface characterized by a Lorentz-type dispersion with a steplike temporal variation in its parameters. Our findings reveal a new process: an unconventional frequency generation at the natural resonances of the system.

View Article and Find Full Text PDF

Background: Online and offline identity-driven harassment disproportionately affects minoritized college students, contributing to poorer academic performance and attrition. Because victims are often hesitant to formally report incidents, additional research is needed to understand the genuine prevalence of these experiences as well as the responses victims engage in following the incidents.

Methods: A large undergraduate sample ( = 2000) from a Midwestern university responded to an anonymous survey assessing the frequency of identity-driven behavior occurring on-campus and beyond, in addition to how they responded to harassment.

View Article and Find Full Text PDF

Tunable generation of vortex beams holds relevance in various fields, including communications and sensing. In this paper, we demonstrate the feasibility of nonlinear spin-orbit interactions in thin films of materials with second-order nonlinear susceptibility. Remarkably, the nonlinear tensor can mix the longitudinal and transverse components of the pump field.

View Article and Find Full Text PDF

Nonlinear silicon photonics offers unique abilities to generate, manipulate and detect optical signals in nano-devices, with applications based on field localization and large third order nonlinearity. However, at the nanoscale, inefficient nonlinear processes, absorption, and the lack of realistic models limit the nano-engineering of silicon. Here we report measurements of second and third harmonic generation from undoped silicon membranes.

View Article and Find Full Text PDF

We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances.

View Article and Find Full Text PDF

Phase change materials are suitable for tunable photonic devices where the optical response can be altered under external stimuli, such as heat, an electrical or an optical signal. In this scenario, we performed numerical simulations to study the optical properties of a flat unpatterned resonant structure and a grating, both coated with a thin film of vanadium dioxide (VO). Our results suggest that it is possible to modulate broadband and narrowband reflectance spectra of the resonant structures in the visible to near-infrared range by more than 40 % when the VO undergoes an insulator-to-metal phase transition.

View Article and Find Full Text PDF

Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an AsS-based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal.

View Article and Find Full Text PDF

Stalking and intrusive harassment (SIH) are prevalent and serious public health issues associated with significant psychological, social, and economic consequences. Further exacerbating this problem is the growing use of technology and the internet, which has facilitated the perpetration of SIH behaviors via electronic means. Given its prevalence and negative impact, it is imperative to identify precursors of cyber and offline SIH to better predict and mitigate its detrimental effects.

View Article and Find Full Text PDF

Understanding how light interacts with matter at the nanoscale is pivotal if one is to properly engineer nano-antennas, filters and other devices whose geometrical features approach atomic size. We report experimental results on second and third harmonic generation from 20 nm- and 70 nm-thick gold layers, for TE- and TM-polarized incident light pulses. We discuss the relative roles that bound electrons and an intensity dependent free electron density (hot electrons) play in third harmonic generation.

View Article and Find Full Text PDF

Epsilon-near-zero materials are exceptional candidates for studying electrodynamics and nonlinear optical processes at the nanoscale. We demonstrate that by alternating a metal and a highly doped conducting-oxide, the epsilon-near-zero regime may be accessed resulting in an anisotropic, composite nanostructure that significantly improves nonlinear interactions. The investigation of the multilayer nanostructure reveals the actual role of the anisotropy, showing that high degrees of anisotropy might be necessary to effectively boost nonlinear processes.

View Article and Find Full Text PDF

Phase-locked second and third harmonic generation in the opaque region of a GaAs wafer is experimentally observed and analyzed both in transmission and reflection. These harmonic components, which are generated close to the surface, can propagate through an opaque material as long as the pump is tuned to a region of transparency or semitransparency and correspond to the inhomogeneous solutions of Maxwell's equations with nonlinear polarization sources. We show that measurement of the angular and polarization dependence of the observed harmonic components allows one to infer the different nonlinear mechanisms that trigger these processes, including not only the bulk nonlinearity but also the surface and magnetic Lorentz contributions, which usually are either hidden by the bulk contributions or assumed to be negligible.

View Article and Find Full Text PDF

Electrolytically tunable graphene "building blocks" for reconfigurable and optically transparent microwave surfaces and absorbers have been designed and fabricated by exploiting Deep Eutectic Solvents (DESs). DESs have been first explored as electrolytic and environmentally friendly media for tuning sheet resistance and Fermi level of graphene together with its microwave response (reflection, transmission and absorption). We consider the tunability of the reconfigurable surfaces in terms of transmittance, absorption and reflectance, respectively, over the X and Ku bands when the gate voltage is varied in the -1.

View Article and Find Full Text PDF

In the context of electromagnetism and nonlinear optical interactions, damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [Phys. Lett.

View Article and Find Full Text PDF

Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of epsilon-near-zero nanofilms made of low-loss doped cadmium-oxide. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths.

View Article and Find Full Text PDF

In this paper, we numerically and experimentally demonstrate how to modulate the amplitude and phase of a microwave ring resonator by means of few-layers chemical vapour deposition graphene. In particular, both numerical and experimental results show a modulation of about 10 dB and a 90 degrees-shift (quadrature phase shift) when the graphene sheet-resistance is varied. These findings prove once again that graphene could be efficiently exploited for the dynamically tuning and modulation of microwave devices fostering the realization of (i) innovative beam-steering and beam-forming systems and (ii) graphene-based sensors.

View Article and Find Full Text PDF

We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.

View Article and Find Full Text PDF

Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.

View Article and Find Full Text PDF

We propose an innovative approach for the realization of a microwave absorber fully transparent in the optical regime. This device is based on the Salisbury screen configuration, which consists of a lossless spacer, sandwiched between two graphene sheets whose sheet resistances are different and properly engineered. Experimental results show that it is possible to achieve near-perfect electromagnetic absorption in the microwave X-band.

View Article and Find Full Text PDF

We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process.

View Article and Find Full Text PDF

In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

View Article and Find Full Text PDF

We investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.

View Article and Find Full Text PDF

We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.

View Article and Find Full Text PDF

Although the Juvenile Sex Offender Assessment Protocol-II (J-SOAP-II) and the Structured Assessment of Violence Risk in Youth (SAVRY) include an emphasis on dynamic, or modifiable factors, there has been little research on dynamic changes on these tools. To help address this gap, we compared admission and discharge scores of 163 adolescents who attended a residential, cognitive-behavioral treatment program for sexual offending. Based on reliable change indices, one half of youth showed a reliable decrease on the J-SOAP-II Dynamic Risk Total Score and one third of youth showed a reliable decrease on the SAVRY Dynamic Risk Total Score.

View Article and Find Full Text PDF

The impact of sexual fantasies in future risk and treatment response among sexual offenders has long been known. However, as we develop objective self-report measures of sexual fantasies, response bias is becoming an increasing concern. In examining a sample of institutionalized sex offenders, the present study suggests that offenders' responses on these measures are prone to response bias, the bias does not negate their associations with other self-report measures of sexual deviance, and relationship of their sexual fantasies does not appear to relate to actual behavioral indications.

View Article and Find Full Text PDF