Publications by authors named "Sayuri Sakuragi"

The type I interferon (IFN) response is one of the primary defense systems against various pathogens. Although rubella virus (RuV) infection is known to cause dysfunction of various organs and systems, including the central nervous system, little is known about how human neural cells evoke protective immunity against RuV infection, leading to controlling RuV replication. Using cultured human neural cells experimentally infected with RuV RA27/3 strain, we characterized the type I IFN immune response against the virus.

View Article and Find Full Text PDF
Article Synopsis
  • The HIV-1 virus incorporates its own RNA genome using a specific segment called the psi, found at the 5'-end of the viral genome.
  • A study compared psi sequences from two HIV-1 variants, subtype D and subtype B, discovering that subtype D has reduced packaging ability despite similar dimerization capabilities.
  • Further analysis revealed that two specific nucleotides (226 and 227) in the psi segment significantly affect the structural dynamics and efficiency of RNA packaging, indicating that these nucleotides act as regulators for packaging efficiency without influencing dimerization.
View Article and Find Full Text PDF

About the relationship between retroviral genome packaging and translation, three possible modes (random-, trans-, and cis-) of packaging process could be assumed. In this report, we developed an assay system based on the RT-qPCR to measure the packaging efficiency of primate lentiviruses. With this system, we analyzed the genome packaging modes of primate lentiviruses such as HIV-1, 2, SIVmac and SIVagm.

View Article and Find Full Text PDF

Background: The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization.

View Article and Find Full Text PDF

Reverse transcription (RT) is one of the hallmark features of retroviruses. During RT, virus encoded reverse transcriptase (RTase) must transfer from one end to the other end of the viral genome on two separate occasions to complete RT and move on to the production of proviral DNA. In addition, multiple strand-transfer events between homologous regions of the dimerized viral genome by RTase are also observed, and such recombination events serve as one of the driving forces behind human immunodeficiency virus (HIV) genome sequence diversity.

View Article and Find Full Text PDF

The dimer initiation site/dimer linkage sequence (DIS/DLS) region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play essential roles at various stages of the viral life cycle. Through a novel assay we had recently developed, we reported on the necessary and sufficient region for RNA dimerization in the HIV-1 virion. Using this system, we performed further detailed mapping of the functional base pairs necessary for HIV-1 DLS structure.

View Article and Find Full Text PDF

The relationship between virion protein maturation and genomic RNA dimerization of human immunodeficiency virus type 1 (HIV-1) remains incompletely understood. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. Within the virion maturation process, the RNA dimer stabilization begins during the primary cleavage (p2-NC) of Pr55 Gag.

View Article and Find Full Text PDF

More than ten subtypes of Human immunodeficiency virus type 1 (HIV-1) have been identified, and many inter-subtype recombinant viruses have been isolated. The genome of HIV-1 is a single-stranded positive sense RNA, and is always found as dimers in virus particles. Frequent recombination between two genomes during reverse transcription is often observed and thus reasonable to assume that genome dimerization controls viral genomic recombination.

View Article and Find Full Text PDF

Biomarkers are commonly used for verification of infection in conjunction with the development of viral vectors or experiments involving virus infection. Leukocyte surface antigens (CDs) are a prime option for biomarkers since they can be easily visualized and analyzed by flow cytometry after indirect fluorescent staining. For analyses of human cells, murine CD24 (Heat Stable Antigen: HSA) and CD90.

View Article and Find Full Text PDF

It has been suggested that the dimer initiation site/dimer linkage sequence (DIS/DLS) region of the human immunodeficiency virus type 1 (HIV-1) RNA genome plays an important role at various stages of the viral life cycle. Recently we found that the duplication of the DIS/DLS region on viral RNA caused the production of partially monomeric RNAs in virions, indicating that this region indeed mediates RNA-RNA interaction. In this report, we followed up on this finding to identify the necessary and sufficient region for RNA dimerization in the virion of HIV-1.

View Article and Find Full Text PDF

In cells, the expression of Gag protein, one of the major structural proteins of retroviruses, is sufficient for budding virus-like particles (VLPs) from the cell surface. We have previously reported that spheroplasts of Saccharomyces cerevisiae expressing HIV-1 Gag proteins from an episomal plasmid constitutively released a large amount of VLPs into culture media; however, commercially available ELISA kits which detect mature capsid of HIV-1 could not detect uncleaved 55-kDa Gag proteins released from budding yeast. We therefore developed a method to quantitate VLP levels released from budding yeast by using fusion protein from HIV-1 Gag and Firefly Luciferase.

View Article and Find Full Text PDF

Expression of retroviral Gag protein in yeast has previously shown Gag targeting to the plasma membrane but little or no production of Gag virus-like particles (VLPs). Here we show that, after removal of the cell wall, the expression of HIV type 1 Gag protein in Saccharomyces cerevisiae spheroplasts allowed simultaneous budding of VLPs from the plasma membrane. Our data show that (i) the VLPs released from yeast spheroplasts were spherical and had morphological features, such as membrane apposed electron-dense layers, characteristic of the immature form of HIV particles; (ii) the VLPs were completely enclosed in the plasma membrane derived from yeast, which is denser than that of higher eukaryotic cells; (iii) the VLP Gag shells remained intact after treatment of nonionic detergent; and (iv) the VLPs were released soon after removal of the cell wall and accumulated up to 300 microg/liter of culture.

View Article and Find Full Text PDF