Flow cytometry, single-cell RNA sequencing, and other analyses enable us to capture immune profiles of the tumor microenvironment. Here, we present a protocol to characterize the immune profile of tumor-bearing mice. We describe steps for establishing mouse models and preparing single-cell suspensions from tumor tissue and other immune-related organs, which can be further analyzed by flow cytometry and other omics assays.
View Article and Find Full Text PDFUbiquitin specific protease 18 (USP18) serves as a potent inhibitor of Type I interferon (IFN) signaling. Previous studies have shown that Usp18 deficient (homozygous Usp18 gene knockout) mice exhibit hydrocephalus; however, the precise molecular mechanism underlying hydrocephalus development remains elusive. In this study, we demonstrate that mice lacking both type I IFN receptor subunit 1 (Ifnar1) and Usp18 (Ifnar1/Usp18 double knockout mice) are viable and do not display a hydrocephalus phenotype.
View Article and Find Full Text PDFCancer immunotherapy, such as immune checkpoint blockade (ICB), has emerged as a groundbreaking approach for effective cancer treatment. Despite its considerable potential, clinical studies have indicated that the current response rate to cancer immunotherapy is suboptimal, primarily attributed to low immunogenicity in certain types of malignant tumors. Immunogenic cell death (ICD) represents a form of regulated cell death (RCD) capable of enhancing tumor immunogenicity and activating tumor-specific innate and adaptive immune responses in immunocompetent hosts.
View Article and Find Full Text PDFThere are over 220 identified genotypes of Human papillomavirus (HPV), and the HPV genome encodes 3 major oncogenes, E5, E6, and E7. Conservation and divergence in protein sequence and function between low-risk versus high-risk oncogenic HPV genotypes has not been fully characterized. Here, we used modern computational and structural folding algorithms to perform a comparative analysis of HPV E5, E6, and E7 between multiple low risk and high risk genotypes.
View Article and Find Full Text PDFTumor-associated myeloid cells modulate the tumor microenvironment and affect tumor progression. Type I interferon (IFN-I) has multiple effects on tumors and immune response, and ubiquitin-specific peptidase 18 (USP18) functions as a negative regulator of IFN-I signal transduction. This study aims to examine the function of IFN-I in myeloid cells during tumor progression.
View Article and Find Full Text PDFThe role that human papillomavirus (HPV) oncogenes play in suppressing responses to immunotherapy in cancer deserves further investigation. In particular, the effects of HPV E5 remain poorly understood relative to E6 and E7. Here, we demonstrate that HPV E5 is a negative regulator of anti-viral interferon (IFN) response pathways, antigen processing, and antigen presentation.
View Article and Find Full Text PDFWhile immunotherapy has emerged as a breakthrough cancer therapy, it is only effective in some patients, indicating the need of alternative therapeutic strategies. Induction of cancer immunogenic cell death (ICD) is one promising way to elicit potent adaptive immune responses against tumor-associated antigens. Type I interferon (IFN) is well known to play important roles in different aspects of immune responses, including modulating ICD in anti-tumor action.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic malignancies with a propensity to progress to acute myeloid leukemia. Causal mutations in multiple classes of genes have been identified in patients with MDS with some patients harboring more than 1 mutation. Interestingly, double mutations tend to occur in different classes rather than the same class of genes, as exemplified by frequent cooccurring mutations in the transcription factor RUNX1 and the splicing factor SRSF2.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
February 2022
Purpose: B cells play a key role in outcomes of cancer patients and responses to checkpoint blockade immunotherapies. However, the effect of radiation therapy on B cell populations is poorly understood. Here we characterize the effects of radiation on the development, survival, and phenotype of physiological B-cell subsets.
View Article and Find Full Text PDFBackground: Image guidance in radiation oncology has resulted in significant improvements in the accuracy and precision of radiation therapy (RT). Recently, the resolution and quality of cone beam computed tomography (CBCT) for image guidance has increased so that tumor masses and lymph nodes are readily detectable and measurable. During treatment of head and neck squamous cell carcinoma (HNSCC), on-board CBCT setup imaging is routinely obtained; however, this CBCT imaging data is not utilized to predict patient outcomes.
View Article and Find Full Text PDFThe role of B cells in the tumor microenvironment and B-cell-mediated antitumor immune responses remains relatively understudied. Recent seminal studies have discovered that B cells and associated tertiary lymphoid structures correlate with responses to checkpoint blockade immunotherapy and are prognostic for overall survival of cancer patients. B-cell subsets have remarkable functional diversity and include professional antigen-presenting cells, regulatory cells, memory populations, and antibody-producing plasma cells.
View Article and Find Full Text PDFPurpose: To characterize the role of B cells on human papilloma virus (HPV)-associated cancer patient outcomes and determine the effects of radiation and PD-1 blockade on B-cell populations.
Experimental Design: Tumor RNA-sequencing data from over 800 patients with head and neck squamous cell carcinoma (HNSCC) and cervical cancer, including a prospective validation cohort, was analyzed to study the impact of B-cell gene expression on overall survival (OS). A novel murine model of HPV HNSCC was used to study the effects of PD-1 blockade and radiotherapy on B-cell activation, differentiation, and clonality including analysis by single-cell RNA-sequencing and B-cell receptor (BCR)-sequencing.
Type I interferons (IFN), which activate many IFN-stimulated genes (ISG), are known to regulate tumorigenesis. However, little is known regarding how various ISGs coordinate with one another in developing antitumor effects. Here, we report that the ISG is a tumor suppressor in breast cancer.
View Article and Find Full Text PDFThere is a critical need to understand mechanisms of resistance and to develop combinatorial strategies to improve responses to checkpoint blockade immunotherapy (CBI). Here, we uncover a novel mechanism by which the human papillomavirus (HPV) inhibits the activity of CBI in head and neck squamous cell carcinoma (HNSCC). Using orthotopic HNSCC models, we show that radiation combined with anti-PD-L1 immunotherapy significantly enhanced local control, CD8 memory T cells, and induced preferential T-cell homing via modulation of vascular endothelial cells.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) accounts for more than 600,000 cases and 380,000 deaths annually worldwide. Although human papillomavirus (HPV)-associated HNSCCs have better overall survival compared with HPV-negative HNSCC, loco-regional recurrence remains a significant cause of mortality and additional combinatorial strategies are needed to improve outcomes. The primary conventional therapies to treat HNSCC are surgery, radiation, and chemotherapies; however, multiple other targeted systemic options are used and being tested including cetuximab, bevacizumab, mTOR inhibitors, and metformin.
View Article and Find Full Text PDFUndifferentiated pleomorphic sarcoma (UPS) of the maxillary sinus is an extremely rare malignancy of the head and neck. Surgery is the mainstay of treatment for UPS; however, proximity to vital structures makes it challenging to achieve negative surgical margins. Adjuvant therapy including radiation therapy with or without chemotherapy is generally indicated.
View Article and Find Full Text PDFType I IFNs (α, β, and others) are a family of cytokines that are produced in physiological conditions as well as in response to the activation of pattern recognition receptors. They are critically important in controlling the host innate and adaptive immune response to viral and some bacterial infections, cancer, and other inflammatory stimuli. However, dysregulation of type I IFN production or response can contribute to immune pathologies termed "interferonopathies", pointing to the importance of balanced activating signals with tightly regulated mechanisms of tuning this signaling.
View Article and Find Full Text PDFGU-AG consensus sequences are used for intron recognition in the majority of cases of pre-mRNA splicing in eukaryotes. Mutations at splice junctions often cause exon skipping, short deletions, or insertions in the mature mRNA, underlying one common molecular mechanism of genetic diseases. Using N-ethyl-N-nitrosourea, a novel recessive mutation named seal was produced, associated with fragile bones and susceptibility to fractures (spine and limbs).
View Article and Find Full Text PDFType I interferons (IFNs) are multifunctional cytokines that regulate immune responses and cellular functions but also can have detrimental effects on human health. A tight regulatory network therefore controls IFN signaling, which in turn may interfere with medical interventions. The JAK-STAT signaling pathway transmits the IFN extracellular signal to the nucleus, thus resulting in alterations in gene expression.
View Article and Find Full Text PDFObjectives: This study aims to clarify whether gingival fibroblasts produce periostin in response to Th2 cytokines which are elevated in periodontitis lesion and, if so, whether periostin affects the inflammatory response and matrix-protein metabolism.
Design: Human gingival fibroblasts, periodontal ligament cells and the gingival epithelial cell line epi4 were stimulated with interleukin-4 (IL-4), IL-13, tumour necrosis factor-α (TNF-α) and Porphyromonas gingivalis lipopolysaccharide (LPS). Periostin expression was analysed by real-time polymerase chain-reaction (PCR) and Western blotting.
Background: Periodontal disease is suggested to increase the risk of atherothrombotic disease by inducing dyslipidemia. Recently, we demonstrated that proprotein convertase subtilisin/kexin type 9 (PCSK9), which is known to play a critical role in the regulation of circulating low-density lipoprotein (LDL) cholesterol levels, is elevated in periodontitis patients. However, the underlying mechanisms of elevation of PCSK9 in periodontitis patients are largely unknown.
View Article and Find Full Text PDFObjective: To evaluate the microbiological and clinical effects of the systemic administration of sitafloxacin (STFX) on periodontal pockets in elderly patients receiving supportive periodontal therapy (SPT).
Background: Periodontitis is a risk factor for atherosclerosis. Better periodontal health contributes to reduce atherosclerosis-related diseases in elderly population.
Lipopolysaccharide (LPS) from Porphyromonas gingivalis, an oral Gram-negative bacterium, acts as a virulence factor for periodontal disease. Although P. gingivalis LPS does not induce proinflammatory cytokines as strongly as Escherichia coli LPS, it is still able to exploit negative Toll-like receptor (TLR) regulatory pathways and facilitate pathogen persistence.
View Article and Find Full Text PDF