Publications by authors named "Sayuri Hortsch"

Introduction: There is a need for automated, high-throughput assays to quantify immune response after SARS-CoV-2 vaccination. This study assessed the combined utility of the Elecsys Anti-SARS-CoV-2 S (ACOV2S) and the Elecsys Anti-SARS-CoV-2 (ACOV2N) assays using samples from the mRNA-1273 (Spikevax™) phase 2 trial (NCT04405076).

Methods: Samples from 593 healthy participants in two age cohorts (18-54 and ≥ 55 years), who received two injections with placebo (n = 198) or mRNA-1273 (50 μg [n = 197] or 100 μg [n = 198]), were collected at days 1 (first vaccination), 15, 29 (second vaccination), 43, and 57.

View Article and Find Full Text PDF

Background: The ability to quantify an immune response after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential. This study assessed the clinical utility of the quantitative Roche Elecsys Anti-SARS-CoV-2 S assay (ACOV2S) using samples from the 2019-nCoV vaccine (mRNA-1273) phase 1 trial (NCT04283461).

Methods: Samples from 30 healthy participants, aged 18-55 years, who received two injections with mRNA-1273 at a dose of 25 μg (n=15) or 100 μg (n=15), were collected at Days 1 (first vaccination), 15, 29 (second vaccination), 43 and 57.

View Article and Find Full Text PDF

Background: The ability to quantify an immune response after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential. This study assessed the clinical utility of the quantitative Roche Elecsys Anti-SARS-CoV-2 S assay (ACOV2S) using samples from the 2019-nCoV vaccine (mRNA-1273) phase 1 trial (NCT04283461).

Methods: Samples from 30 healthy participants, aged 18-55 years, who received two injections with mRNA-1273 at a dose of 25 μg (n=15) or 100 μg (n=15), were collected at Days 1 (first vaccination), 15, 29 (second vaccination), 43 and 57.

View Article and Find Full Text PDF

Random fluctuations in the amount of cellular components like mRNA and protein molecules are inevitable due to the stochastic and discrete nature of biochemical reactions. If large enough, this so-called "cellular noise" can lead to random transitions between the expression states of a multistable genetic circuit. That way, heterogeneity within isogenic populations is created.

View Article and Find Full Text PDF