Publications by authors named "Sayre R"

Article Synopsis
  • Refining assumptions about the fraction absorbed (Fabs) can enhance the performance of pharmacokinetic models that use in vitro-to-in vivo extrapolation (IVIVE) methods for predicting oral bioavailability (Fbio) of chemicals.
  • In this study, over 400 non-pharmaceuticals were tested for apparent permeability (Papp) using the Caco-2 cell line, leading to the development of a random forest quantitative structure-property relationship (QSPR) model which improved predictions of human bioavailability compared to rat data.
  • The findings were integrated into a high throughput toxicokinetics (HTTK) framework to estimate equivalent doses for bioactivity based on in vitro data, resulting in only minor changes to exposure and bioactivity
View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are widely used, and their fluorinated state contributes to unique uses and stability but also long half-lives in the environment and humans. PFAS have been shown to be toxic, leading to immunosuppression, cancer, and other adverse health outcomes. Only a small fraction of the PFAS in commerce have been evaluated for toxicity using in vivo tests, which leads to a need to prioritize which compounds to examine further.

View Article and Find Full Text PDF

Multiple Wolbachia strains can block pathogen infection, replication and/or transmission in Aedes aegypti mosquitoes under both laboratory and field conditions. However, Wolbachia effects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in which Wolbachia governs pathogen transmission phenotypes; rather, the genetics of the host can significantly modulate Wolbachia-mediated pathogen blocking.

View Article and Find Full Text PDF

Background: Xenobiotic metabolites are widely present in human urine and can indicate recent exposure to environmental chemicals. Proper inference of which chemicals contribute to these metabolites can inform human exposure and risk. Furthermore, longitudinal biomonitoring studies provide insight into how chemical exposures change over time.

View Article and Find Full Text PDF

Humans interact with thousands of chemicals. This study aims to identify substances of emerging concern and in need of human health risk evaluations. Sixteen pooled human serum samples were constructed from 25 individual samples each from the National Institute of Environmental Health Sciences' Clinical Research Unit.

View Article and Find Full Text PDF

Exposure science is evolving from its traditional "after the fact" and "one chemical at a time" approach to forecasting chemical exposures rapidly enough to keep pace with the constantly expanding landscape of chemicals and exposures. In this article, we provide an overview of the approaches, accomplishments, and plans for advancing computational exposure science within the U.S.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of man-made chemicals that are commonly found in body tissues. The toxicokinetics of most PFAS are currently uncharacterized, but long half-lives () have been observed in some cases. Knowledge of chemical-specific is necessary for exposure reconstruction and extrapolation from toxicological studies.

View Article and Find Full Text PDF

Background: Thousands of chemicals are observed in freshwater, typically at trace levels. Measurements are collected for different purposes, so sample characteristics vary. Due to inconsistent data availability for exposure and hazard, it is complex to prioritize which chemicals may pose risks.

View Article and Find Full Text PDF

Background: Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for meaningful estimates of exposure and risk from biomonitoring data.

Objective: Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce chemical exposure intake rate estimates with well-quantified uncertainty.

Methods: Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measured in urine samples from the U.

View Article and Find Full Text PDF

Changing climate and human demographics in the world's mountains will have increasingly profound environmental and societal consequences across all elevations. Quantifying current human populations in and near mountains is crucial to ensure that any interventions in these complex social-ecological systems are appropriately resourced, and that valuable ecosystems are effectively protected. However, comprehensive and reproducible analyses on this subject are lacking.

View Article and Find Full Text PDF

One approach to control dengue virus transmission is the symbiont Wolbachia, which limits viral infection in mosquitoes. Despite plans for its widespread use in Aedes aegypti, Wolbachia's mode of action remains poorly understood. Many studies suggest that the mechanism is likely multifaceted, involving aspects of immunity, cellular stress and nutritional competition.

View Article and Find Full Text PDF

While cassava is one of the most important staple crops worldwide, it has received the least investment per capita consumption of any of the major global crops. This is in part due to cassava being a crop of subsistence farmers that is grown in countries with limited resources for crop improvement. While its starchy roots are rich in calories, they are poor in protein and other essential nutrients.

View Article and Find Full Text PDF

Across multiple sectors, including food, cosmetics and pharmaceutical industries, there is a need to predict the potential effects of xenobiotics. These effects are determined by the intrinsic ability of the substance, or its derivatives, to interact with the biological system, and its concentration-time profile at the target site. Physiologically-based kinetic (PBK) models can predict organ-level concentration-time profiles, however, the models are time and resource intensive to generate .

View Article and Find Full Text PDF

During low light- (LL) induced state transitions in dark-adapted rice (Oryza sativa) leaves, light-harvesting complex (LHC) II become phosphorylated and associate with PSI complexes to form LHCII-PSI-LHCI supercomplexes. When the leaves are subsequently transferred to high light (HL) conditions, phosphorylated LHCII complexes are no longer phosphorylated. Under the HL-induced transition in LHC phosphorylation status, we observed a new green band in the stacking gel of native green-PAGE, which was determined to be LHCII aggregates by immunoblotting and 77K chlorophyll fluorescence analysis.

View Article and Find Full Text PDF

Background: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests.

View Article and Find Full Text PDF

Low- and middle-income countries (LMIC) are increasing investments in early childhood development programs, including early childhood education. As programs reach scale, there is increasing demand for evidence on impacts of investments. Little work to date has examined capacity required to effectively use data at scale in LMIC, including opportunities and barriers to integrating data into ongoing program implementation and tracking child development and quality of services at scale.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Currently it is difficult to prospectively estimate human toxicokinetics (particularly for novel chemicals) in a high-throughput manner. The R software package httk has been developed, in part, to address this deficiency, and the aim of this investigation was to develop a generalized inhalation model for httk. The structure of the inhalation model was developed from two previously published physiologically based models from Jongeneelen and Berge (Ann Occup Hyg 55:841-864, 2011) and Clewell et al.

View Article and Find Full Text PDF

One of the major constraints limiting biomass production in autotrophs is the low thermodynamic efficiency of photosynthesis, ranging from 1 to 4%. Given the absorption spectrum of photosynthetic pigments and the spectral distribution of sunlight, photosynthetic efficiencies as high as 11% are possible. It is well-recognized that the greatest thermodynamic inefficiencies in photosynthesis are associated with light absorption and conversion of excited states into chemical energy.

View Article and Find Full Text PDF

Time courses of compound concentrations in plasma are used in chemical safety analysis to evaluate the relationship between external administered doses and internal tissue exposures. This type of experimental data is rarely available for the thousands of non-pharmaceutical chemicals to which people may potentially be unknowingly exposed but is necessary to properly assess the risk of such exposures. In vitro assays and in silico models are often used to craft an understanding of a chemical's pharmacokinetics; however, the certainty of the quantitative application of these estimates for chemical safety evaluations cannot be determined without in vivo data for external validation.

View Article and Find Full Text PDF

One of the major factors limiting biomass productivity in algae is the low thermodynamic efficiency of photosynthesis. The greatest thermodynamic inefficiencies in photosynthesis occur during the conversion of light into chemical energy. At full sunlight the light-harvesting antenna captures photons at a rate nearly 10 times faster than the rate-limiting step in photosynthetic electron transport.

View Article and Find Full Text PDF

Photosynthetic electron transport rates in higher plants and green algae are light-saturated at approximately one quarter of full sunlight intensity. This is due to the large optical cross section of plant light harvesting antenna complexes which capture photons at a rate nearly 10-fold faster than the rate-limiting step in electron transport. As a result, 75% of the light captured at full sunlight intensities is reradiated as heat or fluorescence.

View Article and Find Full Text PDF

The yellow fever mosquito, Aedes aegypti, serves as the primary vector for epidemic transmission of yellow fever, dengue, Zika (ZIKV), and chikungunya viruses to humans. Control of Ae. aegypti is currently limited to insecticide applications and larval habitat management; however, to combat growing challenges with insecticide resistance, novel genetic approaches for vector population reduction or transmission interruption are being aggressively pursued.

View Article and Find Full Text PDF