Newly approved subunit and mRNA vaccines for respiratory syncytial virus (RSV) demonstrate effectiveness in preventing severe disease, with protection exceeding 80% primarily through the generation of antibodies. An alternative vaccine platform called self-amplifying RNA (saRNA) holds promise in eliciting humoral and cellular immune responses. We evaluate the immunogenicity of a lipid nanoparticle (LNP)-formulated saRNA vaccine called SMARRT.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2023
Single dose slow-release vaccines herald a new era in vaccine administration. An ideal device for slow-release vaccine delivery would be minimally invasive and self-administered, making these approaches an attractive alternative for mass vaccination programs, particularly during the time of a pandemic. In this review article, we discuss the latest advances in this field, specifically for prophylactic vaccines able to prevent infectious diseases.
View Article and Find Full Text PDFProphylactic vaccines capable of preventing human papillomavirus (HPV) infections are still inaccessible to a vast majority of the global population due to their high cost and challenges related to multiple administrations performed in a medical setting. In an effort to improve distribution and administration, we have developed dissolvable microneedles loaded with a thermally stable HPV vaccine candidate consisting of Qβ virus-like particles (VLPs) displaying a highly conserved epitope from the L2 protein of HPV (Qβ-HPV). Polymeric microneedle delivery of Qβ-HPV produces similar amounts of anti-HPV16 L2 IgG antibodies compared to traditional subcutaneous injection while delivering a much smaller amount of intradermal dose.
View Article and Find Full Text PDFHuman papillomavirus (HPV) is a globally prevalent sexually-transmitted pathogen, responsible for most cases of cervical cancer. HPV vaccination rates remain suboptimal, partly due to the need for multiple doses, leading to a lack of compliance and incomplete protection. To address the drawbacks of current HPV vaccines, we used a scalable manufacturing process to prepare implantable polymer-protein blends for single-administration with sustained delivery.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. In this setting, real-time monitoring of therapy and tumor site would give the clinicians a handle to observe therapeutic response and to quantify drug amount to optimize the treatment. In this work, we developed a liposome-based cargo (cancer drugs) delivery strategy that could simultaneously monitor the real-time alternating magnetic field-induced cargo release from the change in MRI relaxation parameter R and the location and condition of liposome from the change in R.
View Article and Find Full Text PDFCancer theranostics is one of the most important approaches for detecting and treating patients at an early stage. To develop such a technique, accurate detection, specific targeting, and controlled delivery are the key components. Various kinds of nanoparticles have been proposed and demonstrated as potential nanovehicles for cancer theranostics.
View Article and Find Full Text PDFExperimental studies on the folding and unfolding of large multi-domain proteins are challenging, given the proteins' complex energy landscapes with multiple intermediates. Here, we report a mechanical unfolding study of a 346-residue, two-domain leucine binding protein (LBP) from the bacterial periplasm. Forced unfolding of LBP is a prerequisite for its translocation across the cytoplasmic membrane into the bacterial periplasm.
View Article and Find Full Text PDF