Publications by authors named "Sayoko Ishise"

Nilvadipine (NIL) solid-dispersion tablets were stored counter to packaging instructions by exposing them to 40 degrees C, 25 degrees C, 75% relative humidity, and light. The dissolution, stability assay, and tablet properties (weight, thickness and hardness) were then examined. NIL dissolved more than 85% after all storage periods with exposure to high temperature and humidity.

View Article and Find Full Text PDF

Nilvadipine (NIL) solid dispersion using crospovidone (Cross-linked-N-vinyl-2-pyrolidone, cl-PVP) and methylcellulose (MC) as carriers was applied to tablet formulation. Several grades of cl-PVP and MC were used, and their influence on tablet properties such as hardness, disintegration, dissolution and chemical stability were investigated. The agitation granulation method was used for preparation of solid dispersion granules, and the granules were compressed using a rotary tableting machine, and finally the obtained tablets were coated with film.

View Article and Find Full Text PDF

Firstly, we investigated the physical stability of nilvadipine (NIL)/crospovidone (cl-PVP) solid dispersion during storage (40 degrees C, 75% relative humidity) with powder x-ray diffraction, differential scanning calorimetry (DSC) and dissolution test. These studies indicated that recrystallization occurred during storage and that the dissolution of NIL greatly decreased, compared with that of the initial finding. Secondly, to improve the amorphous form physical stability of NIL, methylcellulose (MC) was added to NIL/cl-PVP solid dispersions as a dispersion carrier and NIL/cl-PVP/MC ternary solid dispersion systems were obtained by the solvent method.

View Article and Find Full Text PDF

Nilvadipine solid dispersions were prepared by the solvent method using water-insoluble polymers, including low-substituted hydroxypropylcellulose, croscarmellose sodium, carmellose calcium, carmellose, and crospovidone. Differential scanning calorimetry and powder x-ray diffraction analysis showed that nilvadipine was present in an amorphous state in the solid dispersion obtained using crospovidone as a carrier. The degree of crystallinity of nilvadipine was dependent on the ratio of nilvadipine to crospovidone, and nilvadipine was present in an amorphous state when the ratio of nilvadipine to crospovidone was below one-half.

View Article and Find Full Text PDF