Background: High-sensitivity troponin T (HS-TnT) may improve risk-stratification in hemodynamically stable acute pulmonary embolism (PE), but an optimal strategy for combining this biomarker with clinical risk-stratification tools has not been determined.
Study Hypothesis: We hypothesized that different HS-TnT cutoff values may be optimal for identifying (1) low-risk patients who may be eligible for outpatient management and (2) patients at increased risk of clinical deterioration who might benefit from advanced PE therapies.
Methods: Retrospective analysis of hemodynamically stable patients in the University of Michigan acute ED-PE registry with available HS-TnT values.
Fatty acid handling and complex lipid synthesis are altered in the kidney cortex of diabetic patients. We recently showed that inhibition of the renin-angiotensin system without changes in glycemia can reverse diabetic kidney disease (DKD) and restore the lipid metabolic network in the kidney cortex of diabetic (db/db) mice, raising the possibility that lipid remodeling may play a central role in DKD. However, the roles of specific enzymes involved in lipid remodeling in DKD have not been elucidated.
View Article and Find Full Text PDFAcute pulmonary embolism (PE) is a frequently diagnosed condition. Prediction of in-hospital deterioration is challenging with current risk models. The Calgary Acute Pulmonary Embolism (CAPE) score was recently derived to predict in-hospital adverse PE outcomes but has not yet been externally validated.
View Article and Find Full Text PDF