Topological photonics and topological photonic states have opened up a new frontier for optical manipulation and robust light trapping. The topological rainbow can separate different frequencies of topological states into different positions. This work combines a topological photonic crystal waveguide (topological PCW) with the optical cavity.
View Article and Find Full Text PDFDue to the large versatility in organic semiconductors, selecting a suitable (organic semiconductor) material for photodetectors is a challenging task. Integrating computer science and artificial intelligence with conventional methods in optimization and material synthesis can guide experimental researchers to develop, design, predict and discover high-performance materials for photodetectors. To find high-performance organic semiconductor materials for photodetectors, it is crucial to establish a relationship between photovoltaic properties and chemical structures before performing synthetic procedures in laboratories.
View Article and Find Full Text PDFDesigning molecules for drugs has been a hot topic for many decades. However, it is hard and expensive to find a new molecule. Thus, the cost of the final drug is also increased.
View Article and Find Full Text PDFA paradigm for high-quality factor (Q) with a substantial fulfillment for appraising sensing ability and performance has been investigated. Through constructing a 1D (one-dimensional) topological photonic crystal (PhC) mirror heterostructure, which is formed by the image view of 1D topological PhC stacking with its original one. In the 1D topological PhC-mirror heterostructure, there is an interesting mode that appeared with the symmetric, typical Lorentzian-line shape with 100% transmittance in the topological mirror edge-state mode (hybrid resonance mode) at the heterostructure interface.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2021
A paradigm for high buffering performance with an essential fulfillment for sensing and modulation was set forth. Through substituting the fundamental two rows of air holes in an elongated hexagonal photonic crystal (E-PhC) by one row of the triangular gaps, the EPCW is molded to form an irregular waveguide. By properly adjusting the triangle dimension solitary, we fulfilled the lowest favorable value of the physical-size of each stored bit by about μ5.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2020
Slow light with adequate low group velocity and wide bandwidth with a flat band of the zero-dispersion area were investigated. High buffering capabilities were obtained in a silicon-polymer coupled-slot slab photonic crystal waveguide (SP-CS-SPCW) with infiltrating slots by ionic liquid. A figure of merit (FoM) around 0.
View Article and Find Full Text PDFHigh-speed optical amplitude modulation is important for optical communication systems and sensors. Moreover, nano-optical modulators are important for developing optical-communication-aided high-speed parallel-operation processors and micro-biomedical sensors for inside-blood-capillary examinations or microsurgery operations. In this paper, we have designed a plasmonic resonant tunable metasurface with barium titanate (BTO) as a nanoscale optical modulator with a high modulation index and high speed.
View Article and Find Full Text PDFNovel approaches to synthesize efficient inorganic electride [CaAlO](e) (thereafter, C12A7:e) at ambient pressure under nitrogen atmosphere, are actively sought out to reduce the cost of massive formation of nanosized powder as well as compact large size target production. It led to a new era in low cost industrial applications of this abundant material as Transparent Conducting Oxides (TCOs) and as a catalyst. Therefore, the present study about C12A7:e electride is directed towards challenges of cation doping in C12A7:e to enhance the conductivity and form target to deposit thin film.
View Article and Find Full Text PDFIn the present study we synthesized conductive nanoscale [CaAlO](4e) (hereafter denoted as CA:e) material, and reduced graphene oxide (rGO) was produced, which was unexpected; graphene oxide was removed after melting the sample. The conductivity of CA:e composites synthesized at 1550 °C was 1.25 S cm, and the electron concentration was 5.
View Article and Find Full Text PDFOne of the greatest challenges in the enhancement of the electrical properties of conductive mayenite [CaAlO](4e) (hereinafter C12A7:e) is the design of a more suitable/simple synthesis strategy that can be employed to obtain the required properties such as excellent stable electrical conductivity, a high electron concentration, outstanding mobility, and an exceptionally large surface area. Therefore, to synthesize C12A7:e in the metallic state, we proposed a facile, direct synthesis strategy based on an optimized sol-gel combustion method under a nitrogen gas environment using the low-cost precursors Ca(NO)·4HO and Al(NO)·9HO. Using this developed strategy, we successfully synthesized moderately conductive nanoscale C12A7:e powder, but with unexpected carbon components (reduced graphene oxide (rGO) and/or graphene oxide (GO)).
View Article and Find Full Text PDF