Publications by authors named "Sayantani Sinha"

Aims: The aim of this study was to evaluate the role of F-2-fluoro-2-deoxy-D-glucose (F-FDG) positron emission tomography-computed tomography (PET-CT) scan in the detection of axillary lymph node (ALN) involvement and comparison with sentinel lymph node biopsy (SLNB) in operable early-stage breast cancer (EBC).

Settings And Design: It is a retrospective analysis of staging PET-CT scan of EBC.

Methods: A total of 128 patients with histopathologically proven breast cancer (BC) were included in the study.

View Article and Find Full Text PDF

Unlabelled: RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival.

View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemia (AML) is a complex and aggressive cancer with poor outcomes and few effective targeted treatments; KDM6 proteins play a key role in its development by regulating genes linked to DNA damage repair.
  • Research shows that KDM6A and KDM6B are essential for activating these repair mechanisms, and mutations in KDM6A can lead to chemotherapy resistance, though some relapsed AML cases show increased levels of KDM6A.
  • The study suggests that combining inhibitors targeting KDM6A with PARP and BCL2 can enhance cancer cell death, making it a promising new treatment approach for AML, highlighting the importance of KDM6A in predicting treatment response.
View Article and Find Full Text PDF

Polycythemia Vera (PV) is a chronic myeloproliferative neoplasm resulting from an acquired driver mutation in the JAK2 gene of hematopoietic stem and progenitor cells resulting in the overproduction of mature erythrocytes and abnormally high hematocrit, in turn leading to thromboembolic complications. Therapeutic phlebotomy is the most common treatment to reduce the hematocrit levels and consequently decrease thromboembolic risk. Here we demonstrate that, by using the iron restrictive properties of the antisense oligonucleotides against Tmprss6 mRNA, we can increase hepcidin to achieve effects equivalent to therapeutic phlebotomy.

View Article and Find Full Text PDF

We present a rare case of an aberrant right vertebral artery originating from the arch of aorta distal to the origin of the left subclavian artery. The incidence of this particular variant of aberrant origin of the right vertebral artery is extremely uncommon with only seventeen cases reported in literature to date. This case was incidentally detected on a staging positron emission tomography-computerized tomography (PET-CT) scan for lung cancer.

View Article and Find Full Text PDF

Heterotopic ossification (HO) is a common, potentially debilitating pathology that is instigated by inflammation caused by tissue damage or other insults, which is followed by chondrogenesis, osteogenesis, and extraskeletal bone accumulation. Current remedies are not very effective and have side effects, including the risk of triggering additional HO. The TGF-β family member activin A is produced by activated macrophages and other inflammatory cells and stimulates the intracellular effectors SMAD2 and SMAD3 (SMAD2/3).

View Article and Find Full Text PDF

We describe a protocol for a long-term co-culture assay to study the contribution of mesenchymal stromal cells (MSCs) in regulating hematopoietic stem/progenitor cell (HSPC) activity. In addition, we describe the use of a clonogenic assay to determine myelo-erythroid differentiation. This long-term culture-initiating cell assay can be used for qualitative analysis of MSCs capable of supporting hematopoiesis and may also be used as a proxy readout to study HSPC repopulation.

View Article and Find Full Text PDF

Emerging evidences highlight importance of epigenetic regulation and their integration with transcriptional and cell signaling machinery in determining tissue resident adult pluripotent mesenchymal stem/stromal cell (MSC) activity, lineage commitment, and multicellular development. Histone modifying enzymes and large multi-subunit chromatin remodeling complexes and their cell type-specific plasticity remain the central defining features of gene regulation and establishment of tissue identity. Modulation of transcription factor expression gradient ex vivo and concomitant flexibility of higher order chromatin architecture in response to signaling cues are exciting approaches to regulate MSC activity and tissue rejuvenation.

View Article and Find Full Text PDF

Iron is an essential element required for sustaining a normal healthy life. However, an excess amount of iron in the bloodstream and tissue generates toxic hydroxyl radicals through Fenton reactions. Henceforth, a balance in iron concentration is extremely important to maintain cellular homeostasis in both normal hematopoiesis and erythropoiesis.

View Article and Find Full Text PDF

The paternally imprinted neuronatin () gene has been identified as a target of aberrant epigenetic silencing in diverse cancers, but no association with pediatric bone cancers has been reported to date. In screening childhood cancers, we identified aberrant CpG island hypermethylation in a majority of osteosarcoma (OS) samples and in 5 of 6 human OS cell lines studied but not in normal bone-derived tissue samples. CpG island hypermethylation was associated with transcriptional silencing in human OS cells, and silencing was reversible upon treatment with 5-aza-2'-deoxycytidine.

View Article and Find Full Text PDF

Bone morphogenic protein (BMP)/transforming growth factor β (TGF-β) signaling determines mesenchymal-stromal-cell (MSC) osteolineage commitment and tissue identity. However, molecular integration of developmental signaling with MSC-intrinsic chromatin regulation remains incompletely understood. SWI/SNF-(BAF) is an ATP-dependent chromatin remodeler implicated in multi-cellular development.

View Article and Find Full Text PDF

Acquired aplastic anemia (AA) is a bone marrow (BM) failure associated with autoimmune destruction of hematopoietic stem cells (HSCs). Although somatic mutations have been identified in AA patients, mutations alone do not explain AA pathophysiology. SWI/SNF is an evolutionarily conserved, multi-subunit, ATP-dependent chromatin-remodeling protein complex that plays an important role in mammalian hematopoiesis.

View Article and Find Full Text PDF

Condylar articular cartilage in mouse temporomandibular joint develops from progenitor cells near the articulating surface that proliferate, undergo chondrogenesis and mature into hypertrophic chondrocytes. However, it remains unclear how these processes are regulated, particularly postnatally. Here we focused on the apical polymorphic layer rich in progenitors and asked whether the phenotype and fate of the cells require signaling by Indian hedgehog (Ihh) previously studied in developing long bones.

View Article and Find Full Text PDF

Background: Transient receptor potential (TRP) ion channels have emerged as key components contributing to vasoreactivity. Propofol, an anesthetic is associated with adverse side effects including hypotension and acute pain upon infusion. Our objective was to determine the extent to which TRPA1 and/or TRPV1 ion channels are involved in mediating propofol-induced vasorelaxation of mouse coronary arterioles in vitro and elucidate the potential cellular signal transduction pathway by which this occurs.

View Article and Find Full Text PDF

Hereditary Multiple Exostoses (HME) is a rare pediatric disorder caused by loss-of-function mutations in the genes encoding the heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. HME is characterized by formation of cartilaginous outgrowths-called osteochondromas- next to the growth plates of many axial and appendicular skeletal elements. Surprisingly, it is not known whether such tumors also form in endochondral elements of the craniofacial skeleton.

View Article and Find Full Text PDF
Article Synopsis
  • - Heterotopic ossification (HO) is the abnormal formation of bone and cartilage that can occur after severe injuries or surgeries, with a genetic variant seen in Fibrodysplasia Ossificans Progressiva (FOP).
  • - Recent studies found that treatments with corticosteroids like prednisone and dexamethasone, along with the retinoic acid receptor γ agonist Palovarotene, significantly inhibit HO in mouse models, each acting on different stages of the condition.
  • - The combination of these drugs showed similar effectiveness in reducing bone formation without interfering with each other, while both also decreased inflammatory cell activity at the site, indicating they work through both shared and unique mechanisms.
View Article and Find Full Text PDF

We previously demonstrated that the intravenous anesthetic, propofol, restores the sensitivity of transient receptor potential vanilloid channel subtype-1 (TRPV1) receptors via a protein kinase C epsilon (PKCε)-dependent and transient receptor potential ankyrin channel subtype-1 (TRPA1)-dependent pathway in sensory neurons. The extent to which the two pathways are directly linked or operating in parallel has not been determined. Using a molecular approach, our objectives of the current study were to confirm that TRPA1 activation directly results in PKCε activation and to elucidate the cellular mechanism by which this occurs.

View Article and Find Full Text PDF

Background: Transient receptor potential (TRP) ion channels of the A1 (TRPA1) and V1 (TRPV1) subtypes are key regulators of vasomotor tone. Propofol is an intravenous anesthetic known to cause vasorelaxation. Our objectives were to examine the extent to which TRPA1 and/or TRPV1 ion channels mediate propofol-induced depressor responses in vivo and to delineate the signaling pathway(s) involved.

View Article and Find Full Text PDF

Background: Cross talk between peripheral nociceptors belonging to the transient receptor potential vanilloid receptor subtype-1 (TRPV1) and ankyrin subtype-1 (TRPA1) family has been demonstrated recently. Moreover, the intravenous anesthetic propofol has directly activates TRPA1 receptors and indirectly restores sensitivity of TRPV1 receptors in dorsal root ganglion (DRG) sensory neurons. Our objective was to determine the extent to which TRPA1 activation is involved in mediating the propofol-induced restoration of TRPV1 sensitivity.

View Article and Find Full Text PDF