Publications by authors named "Sayantani Basu"

A microbial community maintains its ecological dynamics via metabolite crosstalk. Hence, knowledge of the metabolome, alongside its populace, would help us understand the functionality of a community and also predict how it will change in atypical conditions. Methods that employ low-cost metagenomic sequencing data can predict the metabolic potential of a community, that is, its ability to produce or utilize specific metabolites.

View Article and Find Full Text PDF

The COVID-19 pandemic has caused millions of infections and deaths worldwide in an ongoing pandemic. With the passage of time, several variants of this virus have surfaced. Machine learning methods and algorithms have been very useful in understanding the virus and its implications so far.

View Article and Find Full Text PDF

Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration.

View Article and Find Full Text PDF

This work investigates a sequential strategy to develop DNA-based hydrogel scaffolds with interpenetrating polymeric network. The scaffolds were formed via a two-step procedure. First, a covalently cross-linked DNA-based cryogel was formed by the chemical reaction between DNA strands and a bifunctional cross-linker, polyethylene glycol diepoxide at subzero temperatures.

View Article and Find Full Text PDF

The COrona VIrus Disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has resulted in a challenging number of infections and deaths worldwide. In order to combat the pandemic, several countries worldwide enforced mitigation measures in the forms of lockdowns, social distancing, and disinfection measures. In an effort to understand the dynamics of this disease, we propose a Long Short-Term Memory (LSTM) based model.

View Article and Find Full Text PDF

Injectable hydrogels represent a valuable tool for the delivery of therapeutic molecules aimed to restore the functionality of damaged tissues. In this study, we report the design of a nanocomposite DNA-based hydrogel crosslinked with oxidized alginate (OA) via the formation of reversible imine linkages. The formulated hydrogel functioned as an injectable carrier for the sustained delivery of a small molecule drug, simvastatin.

View Article and Find Full Text PDF

tissue repair holds great potential as a cell-free regenerative strategy. A critical aspect of this approach is the selection of cell instructive materials that can efficiently regulate the defect microenvironment via the release of chemoattractant factors to mobilize and recruit endogenous stem cells toward the site of implantation. Here we report the design of a DNA-based hydrogel as a drug delivery platform for the sustained release of a promising chemoattractant, SDF-1α.

View Article and Find Full Text PDF

Introduction: Physical and mechanical properties of ceramic-based scaffolds can be modulated by introducing hydrogel coatings on their surface. For instance, hydrogels can be used as elastic layers to overcome the brittleness of synthetic ceramic materials or to control the delivery of essential osteogenic factors. In this work, we aimed to achieve both goals by fabricating a novel cytocompatible hydrogel made of gelatin-alginate as a coating for beta-tricalcium phosphate (β-TCP) scaffolds.

View Article and Find Full Text PDF

Injectable hydrogels present several advantages over prefabricated scaffolds including ease of delivery, shear-thinning property, and broad applicability in the fields of drug delivery and tissue engineering. Here, we report an approach to develop injectable hydrogels with sustained drug release properties, exploiting the chemical nature of the DNA backbone and silicate nanodisks. A two-step gelation method is implemented for generating a combination of noncovalent network points, leading to a physically cross-linked hydrogel.

View Article and Find Full Text PDF

Nanodiamonds (NDs) have attracted considerable attention as drug delivery nanocarriers due to their low cytotoxicity and facile surface functionalization. Given these features, NDs have been recently investigated for the fabrication of nanocomposite hydrogels for tissue engineering. Here we report the synthesis of a hydrogel using photocrosslinkable gelatin methacrylamide (GelMA) and NDs as a three-dimensional scaffold for drug delivery and stem cell-guided bone regeneration.

View Article and Find Full Text PDF

A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the body's repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell-based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration.

View Article and Find Full Text PDF

Accumulated uremic toxins like indoxyl sulphate, hippuric acid and p-cresyl sulphates in renal failure patients stimulate proinflammatory effects, and consequently kidney and cardiovascular diseases. Low clearance rate of these uremic toxins from the blood of uremic patients by conventional techniques like hemodialysis is due to their strong covalent albumin binding (greater than 95%) and hydrophobic nature, which led to alternatives like usage of hydrophobic adsorber's in removing these toxins from the plasma of kidney patients. Polymers like polyethylene, polyurethane, polymethylmethacrylate, cellophane and polytetrafluoroethylene were already in use as substitutes for metal devices as dialysis membranes.

View Article and Find Full Text PDF

Current haemodialysis techniques are not capable to remove efficiently low molecular weight hydrophobic uremic toxins from the blood of patients suffering from chronic renal failure. With respect to the hydrophobic characteristics and the high level of protein binding of these uremic toxins, hydrophobic adsorber materials might be an alternative to remove these substances from the plasma of the chronic kidney disease (CKD) patients. Here nanoporous microparticles prepared from poly(ether imide) (PEI) with an average diameter of 90 ± 30 μm and a porosity around 88 ± 2% prepared by a spraying/coagulation process are considered as candidate adsorber materials.

View Article and Find Full Text PDF