Ufmylation plays a crucial role in various cellular processes including DNA damage response, protein translation, and ER homeostasis. To date, little is known about how the enzymes responsible for ufmylation coordinate their action. Here, we study the details of UFL1 (E3) activity, its binding to UFC1 (E2), and its relation to UBA5 (E1), using a combination of structural modeling, X-ray crystallography, NMR, and biochemical assays.
View Article and Find Full Text PDFSmall molecules targeting G-quadruplex of oncogene promoter is considered as a promising anticancer therapeutics approach. Natural aloe compounds aloe emodin, and its glycoside derivative aloe emodin-8-glucoside and aloin have anticancer activity and also have potential DNA binding ability. These three compounds have promising binding ability towards quadruplex structures particularly G-quadruplex.
View Article and Find Full Text PDFUfmylation is a posttranslational modification in which the modifier UFM1 is attached to target proteins. This conjugation requires the concerted work of three enzymes named UBA5, UFC1, and UFL1. Initially, UBA5 activates UFM1 in a process that ends with UFM1 attached to UBA5's active site Cys.
View Article and Find Full Text PDFUfmylation is a post-translational modification essential for regulating key cellular processes. A three-enzyme cascade involving E1, E2 and E3 is required for UFM1 attachment to target proteins. How UBA5 (E1) and UFC1 (E2) cooperatively activate and transfer UFM1 is still unclear.
View Article and Find Full Text PDFTargeted intracellular delivery is an efficient strategy for developing therapeutics against cancer and other intracellular infections. Nonspecific drug delivery shows limited clinical applications owing to high dosage, cytotoxicity, nonspecific action, high cost, etc. Therefore, targeted delivery of less cytotoxic drug candidates to hepatocytes through ASGPR-mediated endocytosis could be an efficient strategy to surmount the prevailing shortcomings.
View Article and Find Full Text PDFBesides ubiquitin (Ub), humans have a set of ubiquitin-like proteins (UBLs) that can also covalently modify target proteins. To date, less is known about UBLs than Ub and even less is known about the UBL called ubiquitin-fold modifier 1 (UFM1). Currently, our understanding of protein modification by UFM1 (UFMylation) is like a jigsaw puzzle with many missing pieces, and in some cases it is not even clear whether these pieces of data are in the right place.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) are fundamental molecules in cellular translation. In this study we have highlighted a fluorescence-based perceptive approach for tRNAs by using a quinoxaline small molecule. We have synthesised a water-soluble fluorescent pyrimido-quinoxaline-fused heterocycle containing a mandatory piperazine tail (DS1) with a large Stokes shift (∼160 nm).
View Article and Find Full Text PDFChitin deacetylase, an enzyme isolated from Cryptococcus laurentii RY1, catalyzes the hydrolysis of acetamido group of N-acetyl-D-glucosamine unit of chitin. The primary objective of this study was to characterize and comprehend the activation of chitin deacetylase by DMSO. The secondary structure of the protein was determined by circular dichroism(CD).
View Article and Find Full Text PDFLevansucrase is a secretary enzyme of Acetobacter nitrogenifigens strain RG1. The enzyme shows enhanced activity in the presence of Hg in spite of being inhibited by other heavy metal ion Cd. In this study the structural characterization of levansucrase in native state as well as in the presence of Hg and Cd by CD spectroscopy is done.
View Article and Find Full Text PDFProtease inhibitors are essential bio-molecules that serve as a model system for the study of protein structure and protease-protease inhibitor interaction. We here report a bi-functional serine protease inhibitor from winged bean (WBCTI) that completely retains its inhibitory property against trypsin and chymotrypsin even after heating at 70°C. Detailed circular dichroism and fluorescence studies at different temperatures, 30-90°C, have been performed to understand the reason behind thermal stability of the protein.
View Article and Find Full Text PDFA winged bean trypsin inhibitor (WbTI-2) of molecular mass ∼20kDa, has been cloned and expressed in Escherichiacoli with full activity like the one from seed protein. It completely inhibits trypsin at an enzyme:inhibitor molar ratio of 1:2. PCR with cDNA and genomic DNA using same primers produced about 550 base pair product, which indicated it to be an intronless gene.
View Article and Find Full Text PDF