Publications by authors named "Sayan Roychowdhury"

Simulations of cancer cell transport require accurately modeling mm-scale and longer trajectories through a circulatory system containing trillions of deformable red blood cells, whose intercellular interactions require submicron fidelity. Using a hybrid CPU-GPU approach, we extend the advanced physics refinement (APR) method to couple a finely-resolved region of explicitly-modeled red blood cells to a coarsely-resolved bulk fluid domain. We further develop algorithms that: capture the dynamics at the interface of differing viscosities, maintain hematocrit within the cell-filled volume, and move the finely-resolved region and encapsulated cells while tracking an individual cancer cell.

View Article and Find Full Text PDF

Background: Current research on the biophysics of circulating tumor cells often overlooks the heterogeneity of cell populations, focusing instead on average cellular properties. This study aims to address the gap by considering the diversity of cell biophysical characteristics and their implications on cancer spread.

Methods: We utilized computer simulations to assess the influence of variations in cell size and membrane elasticity on the behavior of cells within fluid environments.

View Article and Find Full Text PDF

The ability to track simulated cancer cells through the circulatory system, important for developing a mechanistic understanding of metastatic spread, pushes the limits of today's supercomputers by requiring the simulation of large fluid volumes at cellular-scale resolution. To overcome this challenge, we introduce a new adaptive physics refinement (APR) method that captures cellular-scale interaction across large domains and leverages a hybrid CPU-GPU approach to maximize performance. Through algorithmic advances that integrate multi-physics and multi-resolution models, we establish a finely resolved window with explicitly modeled cells coupled to a coarsely resolved bulk fluid domain.

View Article and Find Full Text PDF

Pyrolysis gasoline (Py gas) is used as an octane enhancer of gasoline as it is rich in aromatics. However, removal of carcinogenic benzene from Py gas before blending with gasoline is important to meet the fuel specifications. The main focus of this present study is to determine the sorption kinetics and sorption isotherm of a fabricated insitu nano silver/polyvinyl alcohol (insitu nano Ag/PVA) membrane for pervaporative separation of benzene from model Py gas [mixture of benzene (aromatic) and 1-octene (aliphatic)].

View Article and Find Full Text PDF

In order to understand the effect of cellular level features on the transport of circulating cancer cells in the microcirculation, there has been an increasing reliance on high-resolution in silico models. Accurate simulation of cancer cells flowing with blood cells requires resolving cellular-scale interactions in 3D, which is a significant computational undertaking warranting a cancer cell model that is both computationally efficient yet sufficiently complex to capture relevant behavior. Given that the characteristics of metastatic spread are known to depend on cancer type, it is crucial to account for mechanistic behavior representative of a specific cancer's cells.

View Article and Find Full Text PDF

The fluid dynamics of microporous materials are important to many biomedical processes such as cell deposition in scaffold materials, tissue engineering, and bioreactors. Microporous scaffolds are frequently composed of suspensions of beads that have varying topology which, in turn, informs their hydrodynamic properties. Previous work has shown that shear stress distributions can affect the response of cells in microporous environments.

View Article and Find Full Text PDF