Ex vivo cellular system that accurately replicates sickle cell disease and β-thalassemia characteristics is a highly sought-after goal in the field of erythroid biology. In this study, we present the generation of erythroid progenitor lines with sickle cell disease and β-thalassemia mutation using CRISPR/Cas9. The disease cellular models exhibit similar differentiation profiles, globin expression and proteome dynamics as patient-derived hematopoietic stem/progenitor cells.
View Article and Find Full Text PDFAccumulation of Aβ peptides forming plaque in various regions of the brain is a hallmark of Alzheimer's disease (AD) progression. However, to date, there is no effective management strategy reported for attenuation of Aβ-induced toxicity in the early stages of the disease. Alternate medicinal systems such as Ayurveda in the past few decades show promising results in the management of neuronal complications.
View Article and Find Full Text PDFSelective neuronal vulnerability (SNV) of specific neuroanatomical regions such as frontal cortex (FC) and hippocampus (HC) is characteristic of age-associated neurodegenerative diseases (NDDs), although its pathogenetic basis remains unresolved. We hypothesized that physiological differences in mitochondrial function in neuroanatomical regions could contribute to SNV. To investigate this, we evaluated mitochondrial function in human brains (age range:1-90 y) in FC, striatum (ST), HC, cerebellum (CB) and medulla oblongata (MD), using enzyme assays and quantitative proteomics.
View Article and Find Full Text PDFProduction and deposition of β-amyloid peptides (Aβ) are among the major hallmarks of the pathogenesis of Alzheimer's disease (AD). Mapping the altered protein dynamics associated with Aβ accumulation and neuronal damage may open up new avenues to innovation for drug target discovery in AD. Using quantitative proteomics, we report new findings from the amyloid beta-peptide with 42 amino acids (Aβ42) expressing model for AD compared to that of the wild-type flies.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a leading cause of dementia and a neurodegenerative disease. Proteomics and post-translational modification (PTM) analyses offer new opportunities for a comprehensive understanding of pathophysiology of brain in AD. We report here multiple PTMs in patients with AD, harnessing publicly available proteomics data from nine brain regions and at three different Braak stages of disease progression.
View Article and Find Full Text PDFNeurodegeneration is one of the greatest threats to global public health. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are among the major causes of chronic neurological conditions in the elderly populations. Hence, neuroprotection is at the epicenter of the current 21st-century research agenda in biomedicine.
View Article and Find Full Text PDFTobacco in its smoke and smokeless form are major risk factors for esophageal squamous cell carcinoma (ESCC). However, molecular alterations associated with smokeless tobacco exposure are poorly understood. In the Indian subcontinent, tobacco is predominantly consumed in chewing form.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a common complex disease and a major public health burden in both developed and developing countries. Postgenomic technologies such as proteomics and intelligent mining of multi-omics Big Data offer new prospects for diagnostics and therapeutics innovation for AD. In this context, it is noteworthy that mass spectrometry (MS) data are often searched against proteomics databases to unravel the identity of protein biomarkers.
View Article and Find Full Text PDFUNC-5 Homolog B (UNC5B) is a member of the dependence receptor family. This family of receptors can induce two opposite intracellular signaling cascades depending on the presence or absence of the ligand and is thus capable of driving two opposing processes. UNC5B signaling has been implicated in several cancers, where it induces cell death in the absence of its ligand Netrin-1 and promotes cell survival in its presence.
View Article and Find Full Text PDF