Plasma concentrations of thalidomide and primary 5-hydroxylated metabolites including 5,6-dihydroxythalidomide and glutathione (GSH) conjugate(s) were investigated in chimeric mice with highly "humanized" liver cells harboring cytochrome P450 3A5*1. Following oral administration of thalidomide (100 mg/kg), plasma concentrations of GSH conjugate(s) of 5-hydroxythalidomide were higher in humanized mice than in controls. Simulation of human plasma concentrations of thalidomide were achieved with a simplified physiologically based pharmacokinetic model in accordance with reported thalidomide concentrations.
View Article and Find Full Text PDFThe aim of this study was to extrapolate to humans the pharmacokinetics of estrogen analog bisphenol A determined in chimeric mice transplanted with human hepatocytes. Higher plasma concentrations and urinary excretions of bisphenol A glucuronide (a primary metabolite of bisphenol A) were observed in chimeric mice than in control mice after oral administrations, presumably because of enterohepatic circulation of bisphenol A glucuronide in control mice. Bisphenol A glucuronidation was faster in mouse liver microsomes than in human liver microsomes.
View Article and Find Full Text PDFTo predict concentrations in humans of the herbicidal carbamate molinate, used exclusively in rice cultivation, a forward dosimetry approach was carried out using data from lowest-observed-adverse-effect-level doses orally administered to rats, wild type mice, and chimeric mice with humanized liver and from in vitro human and rodent experiments. Human liver microsomes preferentially mediated hydroxylation of molinate, but rat livers additionally produced molinate sulfoxide and an unidentified metabolite. Adjusted animal biomonitoring equivalents for molinate and its primary sulfoxide from animal studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and human metabolic data with a simple physiologically based pharmacokinetic (PBPK) model.
View Article and Find Full Text PDF