In this paper, we propose a privacy-preserving semantic segmentation method that uses encrypted images and models with the vision transformer (ViT), called the segmentation transformer (SETR). The combined use of encrypted images and SETR allows us not only to apply images without sensitive visual information to SETR as query images but to also maintain the same accuracy as that of using plain images. Previously, privacy-preserving methods with encrypted images for deep neural networks have focused on image classification tasks.
View Article and Find Full Text PDFThis paper presents a three-color balance adjustment for color constancy correction. White balancing is a typical adjustment for color constancy in an image, but there are still lighting effects on colors other than white. Cheng et al.
View Article and Find Full Text PDFSNS providers are known to carry out the recompression and resizing of uploaded images, but most conventional methods for detecting fake images/tampered images are not robust enough against such operations. In this paper, we propose a novel method for detecting fake images, including distortion caused by image operations such as image compression and resizing. We select a robust hashing method, which retrieves images similar to a query image, for fake-image/tampered-image detection, and hash values extracted from both reference and query images are used to robustly detect fake-images for the first time.
View Article and Find Full Text PDF