The aim of present study was to evaluate the qualities of chaste berry (fruit of Vitex agnus-castus L.) preparations using HPLC fingerprint analysis. Seven medicinal products 1 from Japan and 6 from Europe, and 17 health foods, 6 from Japan and 11 from the United States were analyzed.
View Article and Find Full Text PDFIridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves.
View Article and Find Full Text PDFDespite the increasing sales of black cohosh (the dried rhizome and root of Cimicifuga racemosa L.) in the world herbal market, these products have continuous adulteration issues. The botanical authenticity of the black cohosh products is the first important step for ensuring their quality, safety and efficacy.
View Article and Find Full Text PDFIridoids form a broad and versatile class of biologically active molecules found in thousands of plant species. In addition to the many hundreds of iridoids occurring in plants, some iridoids, such as secologanin, serve as key building blocks in the biosynthesis of thousands of monoterpene indole alkaloids (MIAs) and many quinoline alkaloids. This study describes the molecular cloning and functional characterization of three iridoid glucosyltransfeases (UDP-sugar glycosyltransferase6 [UGT6], UGT7, and UGT8) from Madagascar periwinkle (Catharanthus roseus) with remarkably different catalytic efficiencies.
View Article and Find Full Text PDFPlants produce a vast array of specialized metabolites, many of which are used as pharmaceuticals, flavors, fragrances, and other high-value fine chemicals. However, most of these compounds occur in non-model plants for which genomic sequence information is not yet available. The production of a large amount of nucleotide sequence data using next-generation technologies is now relatively fast and cost-effective, especially when using the latest Roche-454 and Illumina sequencers with enhanced base-calling accuracy.
View Article and Find Full Text PDFNumerous difficulties have been associated with forward genetic approaches to identify, and functionally characterize genes involved in the biosynthesis, regulation, and transport of monoterpenoid indole alkaloids (MIAs). While the identification of certain classes of genes associated with MIA pathways has facilitated the use of homology-based approaches to clone other genes catalyzing similar reactions in other parts of the pathway, this has not greatly speeded up the pace of gene discovery for the diversity of reactions involved. Compounding this problem has been the lack of knowledge or even availability of certain MIA intermediates that would be required to establish a novel enzyme reaction to functionally identify a biosynthetic step or the candidate gene product involved.
View Article and Find Full Text PDFOnly a small fraction of the immense diversity of plant metabolism has been explored for the production of new medicines and other products important to human well-being. The availability of inexpensive high-throughput sequencing is rapidly expanding the number of species that can be investigated for the speedy discovery of previously unknown enzymes and pathways. Exploitation of these resources is being carried out through interdisciplinary synthetic and chemical biology to engineer pathways in plant and microbial systems for improving the production of existing medicines and to create libraries of biologically active products that can be screened for new drug applications.
View Article and Find Full Text PDF