Publications by authors named "Say Leong Ong"

While numerous persulfate-based advanced oxidation processes (AOPs) have been studied based on fancy catalysts, the practical combination of Fe or Mn modified granular activated carbon (GAC) has seldom been investigated. The present study focused on a green and readily synthesized Fe-Mn bimetallic oxide doped GAC (Fe-Mn@GAC), to uncover its catalytic kinetics and mechanism when used in the peroxydisulfate (PDS)-based oxidation process for degrading Rhodamine B (RhB), a representative xenobiotic dye. The synthesized Fe-Mn@GAC was characterized by SEM-EDS, XRD, ICP-OES and XPS analyses to confirm its physicochemical properties.

View Article and Find Full Text PDF

Sequential utilization of ozone (O) and biological activated carbon (BAC) followed by UV/chlor(am)ine advanced oxidation process (AOP) has drawn attention in water reuse. However, the formation of disinfection by-products (DBPs) in this process is less evaluated. This study investigated the DBP formation and the relevant toxicity during the O-BAC-UV/chlor(am)ine treatment of sand-filtered municipal secondary effluent.

View Article and Find Full Text PDF

The study aimed to investigate the formation of halogenated disinfection byproducts (DBPs) during applying UV/chlorine (UV/Cl) and unravel the interactive impacts of critical operational parameters and the mechanisms behind DBPs formation. Response surface methodology and quantitative structure-activity relationship models were developed to evaluate the contribution of electrophilic, nucleophilic, and free radical reactions to the formation of DBPs in UV/Cl. The study found that Cl and its interactions dominated the total DBPs and non-Br-DBPs formation, while Br and the Cl-Br interaction played a decisive role in the Br-DBPs formation.

View Article and Find Full Text PDF

Alternative disinfection technology to chlorination is required to control the risk of antibiotic resistance in swimming pools. In this study, copper ions (Cu(II)), which often exist in swimming pools as algicides, were used to activate peroxymonosulfate (PMS) for the inactivation of ampicillin-resistant E. coli.

View Article and Find Full Text PDF

Nature-based solutions or Green infrastructure (GI) used for managing stormwater pollution are growing in popularity across the globe. Stormwater GI models are important tools to inform the planning of these systems (type, design, size), in the most efficient and cost-effective manner. MUSIC, an example of such a tool, uses regression and first order decay models.

View Article and Find Full Text PDF

The UV/Cl process (also known as chlorine photolysis, which is the combination of chlorine and simultaneous irradiation of UV light) is conventionally applied at acidic mediums for drinking water treatment and further treatment of wastewater effluents for secondary reuse. This is because the quantum yield of HO from HOCl (ϕ = 1.4) is greater than the one from OCl (ϕ = 0.

View Article and Find Full Text PDF

Micro-scale ZVI@GAC-based iron-carbon galvanic-cells (ZVI@GACs) were prepared with the Ca-Si-H/Ca-H formation process and first applied to initiate radical generation and coagulation processes in MBR for treating bio-refractory industrial wastewater (IWW). Batch tests revealed the HO production (0.19-0.

View Article and Find Full Text PDF

Phenolic compounds are common ccontaminants in industrial effluents. In this study, a combined catalytic microbubble ozonation and biological process was developed and applied for efficient industrial phenolic wastewater (PWW) treatment. Catalytic activity of an iron-oxides (FeO) doped granular activated carbon (GAC) catalyst (FeO@GAC) in microbubble ozonation for PWW treatment was investigated.

View Article and Find Full Text PDF

Thermal-based Zero Liquid Discharge (ZLD) process has been used for managing industrial brine. However, conventional thermal ZLD process is very energy intensive. In view of this, pre-concentration techniques have been applied prior to thermal process to reduce energy consumption of ZLD systems.

View Article and Find Full Text PDF

In recent years, many studies have been conducted on using different filter media in bioretention systems for stormwater runoff treatment. This critical review paper provides a comprehensive review on the current state of water treatment residual (WTR), a recycled material that can be used as bioretention filter media for removals of key stormwater runoff pollutants (especially phosphorus) and future perspectives with innovative modification on WTR applied for pathogen removal from stormwater runoff. This review paper comprised (i) a brief summary of the reported WTR characteristics, (ii) a thorough evaluation of WTR performance on major pollutants removal from stormwater runoff (iii) a discussion on phosphorus removal mechanisms by WTR applied in the stormwater runoff treatment, and (iv) a review of the future perspectives of WTR for pathogen removal and other potential practical application in the field of stormwater treatment.

View Article and Find Full Text PDF

Chemical oxygen demand (COD) is one of the most important water quality parameters that quantifies the amount of oxygen needed to oxidize oxidizable pollutants (mainly organics) in water samples. However, erroneous COD results were commonly observed for bromide-rich industrial wastewater samples using standard COD test. Bromide in water sample is known to seriously interfere with COD test.

View Article and Find Full Text PDF

Extensive studies have been conducted on bioretention filter media applied in best management practices for stormwater runoff treatment. To date, more reported studies are focused on pollutants elimination such as suspended solids and nutrients. There has been limited research on pathogen removal from stormwater runoff.

View Article and Find Full Text PDF

Black TiO as a solar-driven photocatalyst has attracted enormous attention from scientists and engineers in water and wastewater treatment field. Most of the methods used for the preparation of black TiO are thermal treatment under a hydrogen atmosphere. Nevertheless, it is well known that working with hydrogen is not safe and needs special maintenance.

View Article and Find Full Text PDF

In the present study, the sorption and biodegradation characteristics of five pharmaceutical and personal care products (PPCPs), including acetaminophen (ACT), carbamazepine (CBZ), crotamiton (CTMT), diethyltoluamide (DEET) and salicylic acid (SA), were studied in laboratory-batch experiments. Sorption kinetics experimental data showed that sorption systems under this study were more appropriately described by the pseudo second-order kinetics with a correlation coefficient (R2)>0.98.

View Article and Find Full Text PDF

In this study, pharmaceutical wastewater with high salinity and total chemical oxygen demand (TCOD) was treated by an anaerobic membrane bioreactor (AnMBR) and an anaerobic bio-entrapped membrane reactor (AnBEMR). The microbial populations and communities were analyzed using the 454 pyrosequencing method. The hydraulic retention time (HRT), membrane flux and mean cell residence time (MCRT) were controlled at 30.

View Article and Find Full Text PDF

In this study, the removal of ibuprofen (IBP), a pharmaceutical compound, from aqueous media by Money plant (Epipremnum aureum) was investigated. The effect of ferrous iron (Fe(2+)) on enhancing the IBP removal rate was also analyzed. The first-order removal rate constants showed higher values for lower IBP initial concentrations in the range of 0.

View Article and Find Full Text PDF

Pharmaceutical and personal care products (PPCPs) and artificial sweeteners (ASs) are emerging organic contaminants (EOCs) in the aquatic environment. The presence of PPCPs and ASs in water bodies has an ecologic potential risk and health concern. Therefore, it is needed to detect the pollution sources by understanding the transport behavior of sewage molecular markers in a subsurface area.

View Article and Find Full Text PDF

Microalgae in three submerged ceramic membrane photobioreactors (SCMPBRs) with different hydraulic retention times (HRTs) were fed with permeate of a submerged ceramic membrane bioreactor for a period of 3 months to investigate the lipid content and also the biodiesel quality produced at different HRTs. The lipid content, lipid productivity and fatty acid compositions for all three SCMPBRs were not significantly different at the 95% confidence level. These results suggested that insignificant change in the amount of fatty acids was observed at different HRTs that supplied varying concentration of nitrate in the medium.

View Article and Find Full Text PDF

Graphene-P25 (Gr-P25) nanocomposites were synthesized by a simple microwave hydrothermal method. The nanocomposites with different graphene loading were evaluated for the degradation of an important pharmaceutical water pollutant, Carbamazepine (CBZ) under UVA irradiation in a batch reactor. Response surface methodology (RSM) was used to optimize three key independent operating parameters, namely Gr-P25 nanocomposites dose (X1), CBZ initial concentration (X2) and UV light intensity (X3), for photocatalytic degradation of CBZ.

View Article and Find Full Text PDF

This study aimed to provide the first and comprehensive data on the occurrence of 17 target pharmaceuticals and personal care products (PPCPs) in urban water environment in Singapore. Meanwhile, this study also verified the suitability of these PPCPs as specific markers of raw wastewater contamination in receiving water bodies in highly urbanized areas where both surface water and groundwater are not impacted by the discharge of treated wastewater effluents. Analytical results of wastewater showed that among 17 target PPCPs examined, only 5 PPCPs were detected in 100 % of raw wastewater samples, including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), diethyltoluamide (DEET), and salicylic acid (SA).

View Article and Find Full Text PDF

There is no quantitative data on the occurrence of artificial sweeteners in the aquatic environment in Southeast Asian countries, particularly no information on their suitability as indicators of raw wastewater contamination on surface water and groundwater. This study provided the first quantitative information on the occurrence of artificial sweeteners in raw wastewater, surface water and groundwater in the urban catchment area in Singapore. Acesulfame, cyclamate, saccharin, and sucralose were ubiquitous in raw wastewater samples at concentrations in the range of ng/L-μg/L, while other sweeteners were not found or found only in a few of the raw wastewater samples.

View Article and Find Full Text PDF

Many efforts have been made to understand the biodegradation of emerging trace organic contaminants (EOCs) in the natural and engineered systems. This review summarizes the current knowledge on the biodegradation of EOCs while having in-depth discussion on metabolism and cometabolism of EOCs. Biodegradation of EOCs is mainly attributed to cometabolic activities of both heterotrophic and autotrophic microorganisms.

View Article and Find Full Text PDF

A high-throughput method for the simultaneous determination of 24 pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs) and artificial sweeteners (ASs) was developed. The method was based on a single-step solid phase extraction (SPE) coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and isotope dilution. In this study, a single-step SPE procedure was optimized for simultaneous extraction of all target analytes.

View Article and Find Full Text PDF

The performance of an ultra-compact biofilm reactor (UCBR) treating domestic wastewater (DWW) collected from a local water reclamation plant; and gradually shifting to a mono-type carbon source synthetic wastewater (SWW) combined with DDW (CWW) and finally SWW; was investigated in this study. The total COD concentrations of influent DWW and CWW/SWW were 413.6 ± 80.

View Article and Find Full Text PDF

The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated.

View Article and Find Full Text PDF