This study investigates the effects of Zn substitution on the magnetic properties of ∼5 nm cobalt ferrite nanoparticles (ZnxCo1-xFe2O4, where x = 0, 0.13, 0.34, and 0.
View Article and Find Full Text PDFIron oxide nanoparticles (IONPs) synthesized via thermal decomposition find diverse applications in biomedicine owing to precise control of their physico-chemical properties. However, use in such applications requires phase transfer from organic solvent to water, which remains a bottleneck. Through the thermal decomposition of iron oleate (FeOl), we systematically investigate the impact of synthesis conditions such as oleic acid (OA) amount, temperature increase rate, dwell time, and solvent on the size, magnetic saturation, and crystallinity of IONPs.
View Article and Find Full Text PDFA magnetic perovskite-spinel oxide nanocomposite synthesized through a sol-gel self-combustion process is used for the first time as an adsorbent to remove toxic heavy metals (i.e., Pb).
View Article and Find Full Text PDFTiCT MXene is one of the most comprehensively studied 2D materials in terms of its adsorptive, transport, and catalytic properties, cytotoxic performance, etc. Still, conventional MXene synthesis approaches provide low single-flake MXene yield and frequently uncontrollable properties, demanding further post-processing. The MXene family also lacks magnetism, which is helpful for producing effective nanoadsorbents as their magnetic decantation is the cheapest and most convenient way to remove the spent adsorbent from water.
View Article and Find Full Text PDFDespite modern preparation techniques offer the opportunity to tailor the composition, size, and shape of magnetic nanoparticles, understanding and hence controlling the magnetic properties of such entities remains a challenging task, due to the complex interplay between the volume-related properties and the phenomena occurring at the particle's surface. The present work investigates spinel iron oxide nanoparticles as a model system to quantitatively analyze the crossover between the bulk and the surface-dominated magnetic regimes. The magnetic properties of ensembles of nanoparticles with an average size in the range of 5-13 nm are compared.
View Article and Find Full Text PDFThe design of novel multifunctional materials based on nanoparticles requires tuning of their magnetic properties, which are strongly dependent on the surface structure. The organic coating represents a unique tool to significantly modify the surface structure trough the bonds between the ligands of the organic molecule and the surface metal atoms. This work presents a critical overview of the effects of the organic coating on the magnetic properties of nanoparticles trough a selection of papers focused on different approaches to control the surface structure and the morphology of nanoparticles' assemblies.
View Article and Find Full Text PDFIn this study, we present the preparation of superparamagnetic ordered mesoporous silica (SOMS) for biomedical applications by the combination of high energy ball milling (HEBM) and the liquid crystal template method (LCT) to produce a material comprised of room temperature superparamagnetic Fe₃O₄ nanoparticles in a MCM-41 like mesostructured silica. In a typical synthesis, a mixture of Fe₂O₃ and silica was sealed in a stainless-steel vial with steel balls. Ball milling experiments were performed in a vibratory mill apparatus.
View Article and Find Full Text PDFTo monitor and manage hydrological systems such as brooks, streams, rivers, the use of tracers is a well-established process. Limited number of potential tracers such as salts, isotopes and dyes, make study of hydrological processes a challenge. Traditional tracers find limited use due to lack of multiplexed, multipoint tracing and background noise, among others.
View Article and Find Full Text PDF