Singlet-to-triplet intersystem crossing (ISC) in organic molecules is intimately connected with their geometries: by modifying the molecular shape, symmetry selection rules pertaining to spin-orbit coupling can be partially relieved, leading to extra matrix elements for increased ISC. As an analog to this molecular design concept, the study finds that the lattice symmetry of supramolecular polymers also defines their triplet formation efficiencies. A supramolecular polymer self-assembled from weakly interacting molecules is considered.
View Article and Find Full Text PDFRare-earth complexes are vital for separation chemistry and useful in many advanced applications including emission and energy upconversion. Here, 2D rare-earth clusters having net charges are formed on a metal surface, enabling investigations of their structural and electronic properties on a one-cluster-at-a-time basis using scanning tunneling microscopy. While these ionic complexes are highly mobile on the surface at ≈100 K, their mobility is greatly reduced at 5 K and reveals stable and self-limiting clusters.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2023
We investigate the limit of X-ray detection at room temperature on rare-earth molecular films using lanthanum and a pyridine-based dicarboxamide organic linker as a model system. Synchrotron X-ray scanning tunneling microscopy is used to probe the molecules with different coverages on a HOPG substrate. X-ray-induced photocurrent intensities are measured as a function of molecular coverage on the sample, allowing a correlation of the amount of La ions with the photocurrent signal strength.
View Article and Find Full Text PDFVariable temperature electron paramagnetic resonance (VT-EPR) was used to investigate the role of the environment and oxidation states of several coordinated Eu compounds. We find that while Eu(III) chelating complexes are diamagnetic, simple chemical reduction results in the formation of paramagnetic species. In agreement with the distorted symmetry of Eu molecular complexes investigated in this study, the EPR spectrum of reduced complexes showed axially symmetric signals ( = 2.
View Article and Find Full Text PDFComplexes containing rare-earth ions attract great attention for their technological applications ranging from spintronic devices to quantum information science. While charged rare-earth coordination complexes are ubiquitous in solution, they are challenging to form on materials surfaces that would allow investigations for potential solid-state applications. Here we report formation and atomically precise manipulation of rare-earth complexes on a gold surface.
View Article and Find Full Text PDFWe synthesize artificial graphene nanoribbons by positioning carbon monoxide molecules on a copper surface to confine its surface state electrons into artificial atoms positioned to emulate the low-energy electronic structure of graphene derivatives. We demonstrate that the dimensionality of artificial graphene can be reduced to one dimension with proper "edge" passivation, with the emergence of an effectively gapped one-dimensional nanoribbon structure. These one-dimensional structures show evidence of topological effects analogous to graphene nanoribbons.
View Article and Find Full Text PDFUsing a q+ atomic force microscopy at low temperature, a sexiphenyl molecule is slid across an atomically flat Ag(111) surface along the direction parallel to its molecular axis and sideways to the axis. Despite identical contact area and underlying surface geometry, the lateral force required to move the molecule in the direction parallel to its molecular axis is found to be about half of that required to move it sideways. The origin of the lateral force anisotropy observed here is traced to the one-dimensional shape of the molecule, which is further confirmed by molecular dynamics simulations.
View Article and Find Full Text PDFAsymmetrical and dissymmetrical structures are widespread and play a critical role in nature and life systems. In the field of metallo-supramolecular assemblies, it is still in its infancy for constructing artificial architectures using dissymmetrical building blocks. Herein, we report the self-assembly of supramolecular systems based on two dissymmetrical double-layered ligands.
View Article and Find Full Text PDFFluorescent metallosupramolecules have received considerable attention due to their precisely controlled dimensions as well as the tunable photophysical and photochemical properties. However, phosphorescent analogues are still rare and limited to small structures with low-temperature phosphorescence. Herein, we report the self-assembly and photophysical studies of a giant, discrete metallosupramolecular concentric hexagon functionalized with six alkynylplatinum(II) bzimpy moieties.
View Article and Find Full Text PDFCharge density waves have been intensely studied in inorganic materials such as transition metal dichalcogenides; however their counterpart in organic materials has yet to be explored in detail. Here we report the finding of robust two-dimensional charge density waves in molecular layers formed by α-(BEDT-TTF)-I on a Ag(111) surface. Low-temperature scanning tunneling microscopy images of a multilayer thick α-(BEDT-TTF)-I on a Ag(111) substrate reveal the coexistence of 5 × 5 and 9° charge density wave patterns commensurate with the underlying molecular lattice at 80 K.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFIn recent years, there have been numerous efforts worldwide to develop the synchrotron X-ray scanning tunneling microscopy (SX-STM) technique. Here, the inauguration of XTIP, the world's first beamline fully dedicated to SX-STM, is reported. The XTIP beamline is located at Sector 4 of the Advanced Photon Source at Argonne National Laboratory.
View Article and Find Full Text PDFCoordination-driven self-assembly has been extensively employed to construct a variety of discrete structures as a bottom-up strategy. However, mechanistic understanding regarding whether self-assembly is under kinetic or thermodynamic control is less explored. To date, such mechanistic investigation has been limited to distinct, assembled structures.
View Article and Find Full Text PDFFor the past three decades, the coordination-driven self-assembly of three-dimensional structures has undergone rapid progress; however, parallel efforts to create large discrete two-dimensional architectures-as opposed to polymers-have met with limited success. The synthesis of metallo-supramolecular systems with well-defined shapes and sizes in the range of 10-100 nm remains challenging. Here we report the construction of a series of giant supramolecular hexagonal grids, with diameters on the order of 20 nm and molecular weights greater than 65 kDa, through a combination of intra- and intermolecular metal-mediated self-assembly steps.
View Article and Find Full Text PDFDuring the past few decades, the study of the single polymer chain has attracted considerable attention with the goal of exploring the structure-property relationship of polymers. It still, however, remains challenging due to the variability and low atomic resolution of the amorphous single polymer chain. Here, we demonstrated a new strategy to visualize the single metallopolymer chain with a hexameric or trimeric supramolecule as a repeat unit, in which Ru(II) with strong coordination and Fe(II) with weak coordination were combined together in a stepwise manner.
View Article and Find Full Text PDFMulticomponent self-assembly in one pot provides an efficient way for constructing complex architectures using multiple types of building blocks with different levels of interactions orthogonally. The preparation of multiple types of building blocks typically includes tedious synthesis. Here, we developed a multicomponent synthesis/self-assembly strategy, which combined covalent interaction (C-N bond, formed through condensation of pyrylium salt with primary amine) and metal-ligand interaction (N → Zn bond, formed through 2,2':6',2″-terpyridine-Zn coordination) in one pot.
View Article and Find Full Text PDFThe ability to control nanoscale electronic properties by introducing macroscopic strain is of critical importance for the implementation of two-dimensional (2D) materials into flexible electronics and next-generation strain engineering devices. In this work, we correlate the atomic-scale lattice deformation with a systematic macroscopic bending of monolayer molybdenum disulfide films by using scanning tunneling microscopy and spectroscopy implemented with a custom-built sample holder to control the strain. Using this technique, we are able to induce strains of up to 3% before slipping effects take place and relaxation mechanisms prevail.
View Article and Find Full Text PDFIn the continuously growing field of correlated electronic molecular crystals, there is significant interest in addressing alkali-metal-intercalated aromatic hydrocarbons, in which the possibility of high-temperature superconductivity emerges. However, searching for superconducting aromatic molecular crystals remains elusive due to their small shielding fraction volume. To exploit this potential, a design principle for percolation networks of technologically important film geometry is indispensable.
View Article and Find Full Text PDFCarotenoids and chlorophyll are essential parts of plant leaves and are involved in photosynthesis, a vital biological process responsible for the origin of life on Earth. Here, we investigate how β-carotene and chlorophyll-a form mixed molecular phases on a Au(111) surface using low-temperature scanning tunneling microscopy and molecular manipulation at the single-molecule level supported by density functional theory calculations. By isolating individual molecules from nanoscale molecular clusters with a scanning tunneling microscope tip, we are able to identify five β-carotene conformations including a structure exhibiting a three-dimensional conformation.
View Article and Find Full Text PDFKondo resonances in heterostructures formed by magnetic molecules on a metal require free host electrons to interact with the molecular spin and create delicate many-body states. Unlike graphene, semiconducting graphene nanoribbons do not have free electrons due to their large bandgaps, and thus they should electronically decouple molecules from the metal substrate. Here, we observe unusually well-defined Kondo resonances in magnetic molecules separated from a gold surface by graphene nanoribbons in vertically stacked heterostructures.
View Article and Find Full Text PDF