Publications by authors named "Savoyant A"

An ultrasharp photoluminescence line intimately related to antiferromagnetic order has been found in NiPS_{3}, a correlated van der Waals material, opening prospects for magneto-optical coupling schemes and spintronic applications. Here we unambiguously clarify the singlet origin of this excitation, confirming its roots in the spin structure. Based on a comprehensive investigation of the electronic structure using angle-resolved photoemission and q-dependent electron energy loss spectroscopy as experimental tools we develop, in a first step, an adequate theoretical understanding using density functional theory (DFT).

View Article and Find Full Text PDF

The combination of nuclear and electron magnetic resonance techniques, in pulse and continuous wave regimes, is used to unravel the nature and features of the light-induced magnetic state arising at the surface of chemically prepared zinc oxide nanoparticles (NPs) occurring under 120 K when subjected to a sub-bandgap (405 nm) laser excitation. It is shown that the four-line structure observed around g ∼ 2.00 in the as-grown samples (beside the usual core-defect signal at g ∼ 1.

View Article and Find Full Text PDF

The effects of white-light irradiation on ∼15 nm diameter ZnO nanoparticles are investigated by means of electron paramagnetic resonance, near liquid-nitrogen and liquid-helium temperatures. Under dark conditions, usual core- and surface-defects are detected, respectively, at g = 1.960 and g = 2.

View Article and Find Full Text PDF

Zinc oxide (ZnO) nanorods grown by the low-temperature (90 °C) aqueous chemical method with different cobalt concentration within the synthesis solution (from 0% to 15%), are studied by electron paramagnetic resonance (EPR), just above the liquid helium temperature. The anisotropic spectra of substitutional Co reveal a high crystalline quality and orientation of the NRs, as well as the probable presence of a secondary disordered phase of ZnO:Co. The analysis of the EPR spectra indicates that the disappearance of the paramagnetic native core-defect (CD) at [Formula: see text] is correlated with the apparition of the Co ions lines, suggesting a gradual neutralization of the former by the latter.

View Article and Find Full Text PDF

Pure and cobalt-doped zinc oxide aligned nanorods have been grown by the low-temperature (90 °C) aqueous chemical method on amorphous ZnO seed layer, deposited on a sapphire substrate. High crystallinity of these objects is demonstrated by the electron paramagnetic resonance investigation at liquid helium temperature. The successful incorporation of Co ions in substitution of Zn ones in the ZnO matrix has also been confirmed.

View Article and Find Full Text PDF

A judicious analysis of previously published experimental data leads one to conclude that the ground state of iron(II) phthalocyanine is an orbitally degenerate spin triplet a(1g)(2) e(g)(↑↓↑) b(2g)(↑) ((3)Eg). The ligand field parameters, in relation to Racah's C, are approximately as follows: B20∕C = 0.84, B40∕C = 0.

View Article and Find Full Text PDF

In conventional analyses of g approximately 5 signals given by [4Fe-4S](+) clusters with S = 3/2, the effective g values that cannot be measured in the electron paramagnetic resonance (EPR) spectrum are deduced from rhombograms calculated by assuming that the g matrix is isotropic with g(x) = g(y) = g(z) = 2.00. We have shown that when the two low-field peaks corresponding to the Kramers doublets are visible in the spectrum, a new, independent piece of information about the system can be obtained by studying the temperature dependence of the ratio of the area under these peaks.

View Article and Find Full Text PDF