Publications by authors named "Savithri Handanahal Subbarao"

The C-terminal disordered domain of sesbania mosaic virus (SeMV) RNA-dependent RNA polymerase (RdRp) interacts with the viral protein P10. The functional significance of this interaction in viral replication was examined by a comparative analysis of genomic and sub-genomic RNA levels (obtained by quantitative real time PCR) in the total RNA extracted from Cyamopsis plants agro-infiltrated with wild-type or mutant forms of SeMV infectious cDNA (icDNA). The sgRNA copy numbers were found to be significantly higher than those of gRNA in the wild-type icDNA transfected plants.

View Article and Find Full Text PDF

The RNA-dependent RNA polymerase (RdRp) of sesbania mosaic virus (SeMV) was previously shown to interact with the viral protein P10, which led to enhanced polymerase activity. In the present investigation, the equilibrium dissociation constant for the interaction between the two proteins was determined to be 0.09 µM using surface plasmon resonance, and the disordered C-terminal domain of RdRp was shown to be essential for binding to P10.

View Article and Find Full Text PDF

Mycobacterium tuberculosis, the causative agent of tuberculosis disease, is one among the deadliest pathogens in the world. Due to long treatment regimen, HIV co-infection, persistence of bacilli in latent form and development of XDR and TDR strains of Mtb, tuberculosis has posed serious concerns for managing the disease, and calls for discovery of new drugs and drug targets. Using a computational pipeline involving analysis of the structural models of the Mtb proteome and an analysis of the ATPome, followed by a series of filters to identify druggable proteins, solubility and length of the protein, several candidate proteins were shortlisted.

View Article and Find Full Text PDF

Kinases are ubiquitous enzymes that are pivotal to many biochemical processes. There are contrasting views on the phosphoryl-transfer mechanism in propionate kinase, an enzyme that reversibly transfers a phosphoryl group from propionyl phosphate to ADP in the final step of non-oxidative catabolism of L-threonine to propionate. Here, X-ray crystal structures of propionate- and nucleotide-bound Salmonella typhimurium propionate kinase are reported at 1.

View Article and Find Full Text PDF

The nonstructural protein NSs, encoded by the S RNA of groundnut bud necrosis virus (GBNV) (genus Tospovirus, family Bunyaviridae) has earlier been shown to possess nucleic-acid-stimulated NTPase and 5' α phosphatase activity. ATP hydrolysis is an essential function of a true helicase. Therefore, NSs was tested for DNA helicase activity.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) play a major role in carbon cycle and can be utilized as a source of carbon and energy by bacteria. Salmonella typhimurium propionate kinase (StTdcD) catalyzes reversible transfer of the γ-phosphate of ATP to propionate during l-threonine degradation to propionate. Kinetic analysis revealed that StTdcD possesses broad ligand specificity and could be activated by various SCFAs (propionate>acetate≈butyrate), nucleotides (ATP≈GTP>CTP≈TTP; dATP>dGTP>dCTP) and metal ions (Mg(2+)≈Mn(2+)>Co(2+)).

View Article and Find Full Text PDF

Sesbania mosaic virus (SeMV) is a single-stranded positive-sense RNA plant virus belonging to the genus Sobemovirus. The movement protein (MP) encoded by SeMV ORF1 showed no significant sequence similarity with MPs of other genera, but showed 32% identity with the MP of Southern bean mosaic virus within the Sobemovirus genus. With a view to understanding the mechanism of cell-to-cell movement in sobemoviruses, the SeMV MP gene was cloned, over-expressed in Escherichia coli and purified.

View Article and Find Full Text PDF

Virus‐like particles (VLPs), formed by the structural elements of viruses, have received considerable attention over the past two decades. The number of reports on newly obtained VLPs has grown proportionally with the systems developed for the expression of these particles. The chapter outlines the recent achievements in two important fields of research brought about by the availability of VLPs produced in a foreign host.

View Article and Find Full Text PDF

Polyprotein processing is a major strategy used by many plant and animal viruses to maximize the number of protein products obtainable from a single open reading frame. In Sesbania mosaic virus, open reading frame-2 codes for a polyprotein that is cleaved into different functional proteins in cis by the N-terminal serine protease domain. The soluble protease domain lacking 70-amino-acid residues from the N terminus (deltaN70Pro, where Pro is protease) was not active in trans.

View Article and Find Full Text PDF

Serine hydroxymethyltransferase (SHMT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyses the transfer of the hydroxymethyl group from serine to tetrahydrofolate to yield glycine and N (5), N (10)-methylenetetrahydrofolate. An analysis of the known SHMT sequences indicated that several amino acid residues were conserved. In this paper, we report the identification of the amino acid residues essential for maintaining the oligomeric structure of sheep liver cytosolic recombinant SHMT (scSHMT) through intra- and inter-subunit interactions and by stabilizing the binding of PLP at the active site.

View Article and Find Full Text PDF