Publications by authors named "Savio Torres Farias"

Article Synopsis
  • Scientists believe that life evolved through four major stages, starting from tiny molecules and eventually leading to complex cells!
  • The first big change occurred when nucleic acids and proteins came together to form the earliest living thing called FUCA!
  • Over billions of years, simple life forms turned into more complex ones, eventually leading to plants, animals, and multicellular organisms!
View Article and Find Full Text PDF

•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.

View Article and Find Full Text PDF

This article provides an alternative perspective on viruses, exploring their origins, ecology, and evolution. Viruses are recognized as the most prevalent biological entities on Earth, permeating nearly all environments and forming the virosphere-a significant biological layer. They play a crucial role in regulating bacterial populations within ecosystems and holobionts, influencing microbial communities and nutrient recycling.

View Article and Find Full Text PDF

In this work, we formulate the following question: How the distribution of aminoacyl-tRNA synthetases (aaRSs) went from an ancestral bidirectional gene (mirror symmetry) to the symmetrical distribution of aaRSs in a six-dimensional hypercube of the Standard Genetic Code (SGC)? We assume a primeval RNY code, two Extended Genetic RNA codes type 1 and 2, and the SGC. We outline the types of symmetries of the distribution of aaRSs in each code. The symmetry groups of aaRSs in each code are described, until the symmetries of the SGC display a mirror symmetry.

View Article and Find Full Text PDF

The AstroScience Exploration Network (ASEN) is the latest innovative initiative from the Network of Researchers on the Chemical Emergence of Life (NoRCEL). Materializing on the vibrancy of the African continent, recognizing its people as a key asset, and building on specific strategic advantages, ASEN will funnel the appetite for scientific knowledge through an educational hub that paves the way for the Global South to come to the fore in new global endeavors and will eventually help build a variety of career paths in a diversifying economy.

View Article and Find Full Text PDF

Trying to provide a broad overview about the origin of life in Earth, the most significant transitions of life before cells are listed and discussed. The current approach emphasizes the symbiotic relationships that emerged with life. We propose a rational, stepwise scenario for the origin of life that starts with the origin of the first biomolecules and steps forward until the origins of the first cells.

View Article and Find Full Text PDF

One of the major evolutionary transitions that led to DNA replacing RNA as the primary informational molecule in biological systems is still the subject of an intense debate in the scientific community. DNA polymerases are currently split into various families. Families A, B, and C are the most significant.

View Article and Find Full Text PDF

The origin of life was a cosmic event happened on primitive Earth. A critical problem to better understand the origins of life in Earth is the search for chemical scenarios on which the basic building blocks of biological molecules could be produced. Classic works in pre-biotic chemistry frequently considered early Earth as an homogeneous atmosphere constituted by chemical elements such as methane (CH), ammonia (NH), water (HO), hydrogen (H) and hydrogen sulfide (HS).

View Article and Find Full Text PDF

The occurrence of organized chemical transformations defined as metabolism is one of the most important characteristics of life. Surprisingly though, there is not a consensus about how those transformations were originated in the origin of life. RNA world advocates suggest that biochemical pathways started with ribozymes that were further substituted by enzymes.

View Article and Find Full Text PDF

The evolutionary history of Class I aminoacyl-tRNA synthetases (aaRS) through the reconstruction of ancestral sequences is presented. From structural molecular modeling, we sought to understand its relationship with the acceptor arms and the tRNA anticodon loop, how this relationship was established, and the possible implications in determining the genetic code and the translation system. The results of the molecular docking showed that in 7 out 9 aaRS, the acceptor arm and the anticodon loop bond practically in the same region.

View Article and Find Full Text PDF

Although the knowledge about biological systems has advanced exponentially in recent decades, it is surprising to realize that the very definition of Life keeps presenting theoretical challenges. Even if several lines of reasoning seek to identify the essence of life phenomenon, most of these thoughts contain fundamental problem in their basic conceptual structure. Most concepts fail to identify either necessary or sufficient features to define life.

View Article and Find Full Text PDF

A powerful and concise concept of life is crucial for studies aiming to understand the characteristics that emerged from an inorganic world. Among biologists, the most accepted argument define life under a top-down strategy by looking into the shared characteristics observed in all cellular organisms. This is often made highlighting (i) autonomy and (ii) evolutionary capacity as fundamental characteristics observed in all cellular organisms.

View Article and Find Full Text PDF

We tested the hypothesis that concatemers of ancestral tRNAs gave rise to the 16S ribosomal RNA. We built an ancestral sequence of proto-tRNAs that showed a significant identity of 51.69% and a percentage of structural identity of 0.

View Article and Find Full Text PDF

Cells occupy a prominent place in the history of life in Earth. The central role of cellular organization can be understood by the fact that "cellular life" is often used as a synonym for life itself. Thus, most characteristics used to define cell overlap with those ones used to define life.

View Article and Find Full Text PDF

The theory of chemical symbiosis (TCS) suggests that biological systems started with the collaboration of two polymeric molecules existing in early Earth: nucleic acids and peptides. Chemical symbiosis emerged when RNA-like nucleic acid polymers happened to fold into 3D structures capable to bind amino acids together, forming a proto peptidyl-transferase center. This folding catalyzed the formation of quasi-random small peptides, some of them capable to bind this ribozyme structure back and starting to form an initial layer that would produce the larger subunit of the ribosome by accretion.

View Article and Find Full Text PDF

Herein, we review recent works on the role that the tRNA molecule played in the early origins of biological systems. tRNAs gave origin to the first genes (mRNA), the peptidyl transferase center (PTC), the 16S ribosomal molecule, proto-tRNAs were at the core of a proto-translation system, and the anticodon and operational codes appeared in tRNAs molecules. Metabolic pathways emerged from evolutionary pressures of the decoding systems.

View Article and Find Full Text PDF

Viruses have generally been thought of as infectious agents. New data on mimivirus, however, suggests a reinterpretation of this thought. Earth's biosphere seems to contain many more viruses than previously thought and they are relevant in the maintenance of ecosystems and biodiversity.

View Article and Find Full Text PDF

is a member of the class responsible for urogenital tract infection in cattle and small ruminants. Studies indicate that the process of horizontal gene transfer, the exchange of genetic material among different species, has a crucial role in mollicute evolution, affecting the group's characteristic genomic reduction process and simplification of metabolic pathways. Using bioinformatics tools and the STRING database of known and predicted protein interactions, we constructed the protein-protein interaction network of and compared it with the networks of other members of the class.

View Article and Find Full Text PDF

Studies involving miRNAs have opened discussions about their broad participation in viral infections. Regarding the or Epstein-Barr virus (EBV), miRNAs are important regulators of viral and cellular gene expression during the infectious process, promoting viral persistence and, in some cases, oncogenic processes. We identified 55 miRNAs of EBV type 2 and inferred the viral mRNA target to self-regulate.

View Article and Find Full Text PDF

A neutral evolution model that explicitly considers codons, amino acids, and the degeneracy of the genetic code is developed. The model is built from nucleotides up to amino acids, and it represents a refinement of the neutral theory of molecular evolution. The model is based on a stochastic process that leads to a stationary probability distribution of amino acids.

View Article and Find Full Text PDF

The origin and evolution of the genetic code is a fundamental challenge in modern biology. At the center of this problem is the correct interaction between amino acids and tRNAs. Aminoacyl-tRNA synthetase is the enzyme responsible for the correct binding between amino acids and tRNAs.

View Article and Find Full Text PDF

The 12 different types of graphs of the 8 amino acids encoded by the presumably primeval RNY code are derived. The symmetry groups of these graphs are analyzed and coincide with the corresponding values of polar requirement for each amino acid. The symmetry groups at the codon level are partially carried over as a group or subgroup at the amino acid level.

View Article and Find Full Text PDF

Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric.

View Article and Find Full Text PDF

The origin and evolution of life on the planet is one of the most intriguing challenges in life sciences and, for some researchers, it is centered in the origin of the genetic code. Many hypotheses about the origin and evolution of tRNA have been proposed and in this work a new suggestion is proposed based on the reconstruction of tRNA ancestor sequences. Ancestral sequences of 22 types of tRNA molecules were built by maximum likelihood from 9758 sequences currently reported from different organisms.

View Article and Find Full Text PDF

A comparative genomics analysis among all forty whole genome sequences available for cyanobacteria (3 thermophiles- Thermosynechococcus elongatus BP-1, Synechococcus sp. JA-2-3B'a (2-13), Synechococcus sp. JA-3-3Ab and 37 mesophiles) was performed to identify genomic and proteomic factors responsible for the behaviour of T.

View Article and Find Full Text PDF